
Flexibility of Emulation Learning from Pioneers

in Nonstationary Environments

Moto Shinriki∗1 Hiroaki Wakabayashi∗1 Yu Kono∗1 Tatsuji Takahashi∗1

∗1School of Science and Engineering, Tokyo Denki University

In imitation learning, the agent observes specific action-state pair sequences of another agent (expert) and somehow
reflect them into its own action. One of its implementations in reinforcement learning is the inverse reinforcement
learning. We propose a new framework for social learning, emulation learning, which requires much less informa-
tion from another agent (pioneer). In emulation learning, the agent is given only a certain level of achievement
(accumulated rewards per episode). In this study, we implement emulation learning in the reinforcement learning
setting by applying a model of satisficing action policy. We show that the emulation learning algorithm works well
in a non-stationary reinforcement learning tasks, breaking the often observed trade-off like relationship between
optimality and flexibility.

1. Introduction

Humans usually begin learning with some kind of prior

knowledge. If the knowledge is about the structure of the

environment, the past experience, or other’s action history,

the learning will be somehow model-based, by transfer, or

supervised (or inverse), respectively. Imitation learning re-

quires an expert who provides an exemplar behavior. How-

ever, the expert’s action data may be very expensive or

unavailable in general. On the other hand, there are cases

where (only) the information of someone’s achievement level

is obtained. Our search is often accelerated by a peer’s

high achievement or record breaking, as in sports or in in-

vention. As it is closely related to end state emulation in

social learning[1], we call this form of learning emulation

learning. In emulation, the outcome of an action sequence

(“what”) is socially learned, while in imitation the process

or the procedure (“how”) is observed and assimilated.

In this study, from two aspect, we test the performance

of the three algorithms: the vanilla Q-learning, imitation

learning with inverse reinforcement learning, and our emu-

lation learning with satisficing reinforcement learning. The

first aspect is the speed of the learning algorithms. The sec-

ond aspect is the flexibility of the algorithms. The learning

task is a nonstationary reinforcement learning task, and we

evaluate how flexibly the algorithm can respond to the en-

vironmental changes.

2. The Reinforcement Learning Algo-
rithms

Reinforcement Learning is a type of machine learning

in which an agent learns an appropriate action sequence

through interaction, trial and error, in the environment.

Recently, as researches on game AI and autonomous robot

have been actively conducted, reinforcement learning is

Contact: Tatsuji Takahashi, School of Science and Engi-

neering, Tokyo Denki University, Ishizaka, Hatoyama,

Hikigun, Saitama, Japan 350-0394, Tel: 049-296-5416,
tatsujit@mail.dendai.ac.jp

gaining more attention as a method for autonomous learn-

ing in unknown environments.

2.1 Q-Learning
There is a representative method of reinforcement learn-

ing called Q-learning. The action value Q(st, at) of Q learn-

ing is updated based on the estimation policy. When the

estimation policy is set as the greedy policy, the action value

Q(st, at) is updated as:

Q(st, at) ← Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)−Q(st, at)

)
, (1)

where α is the learning rate and γ is the discount rate.

2.2 Inverse Reinfocement Learning as Imita-
tion

Inverse reinforcement learning (IRL) is a form of learn-

ing of which the goal is to infer a reward function R(s)

from the expert’s behavior trajectory T . A reward func-

tion R(s) is usually a function which returns a reward cal-

culated by multiplying the parameter θ and the one-hot-

vector of the state. The behavior trajectory is a pair of

expert’s states and actions, (s0, a0, s1, a1, ...). In this study,

we used the maximum entropy IRL (MaxEntIRL) as the

implementation[3].

2.3 Emulation by Risk-sensitive Satisficing
(RS)

Humans tend not to exhaustively search for optimaza-

tion. Rather, we satisfice. That is, we confront a task

with certain reference level (aspiration) and finish searching

when we find an satisfactory actoin better than the refer-

ence [6]. When the aspiration is given socially, satisficing

means emulation. Satisicing policy will converge the actions

to take, when the aspiration is satisfied, after the limited

search. We implement emulation with the RS model, a cog-

nitive satisficing value function with reflective risk attitudes

as in the prospect theory in behavioral economics [2]. The

RS value funtion is defined as follows:

RS(st, at) = τ(st, at)
(
Q(st, at)− ℵ(st)

)
(2)

asel
t = arg max

a
RS(st, a) (3)

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2D3-E-4-02



RS’s valuation qualitatively changes according to the sign

of the difference between the aspiration and the Q value. It

considers the reliablity of the Q value with τ that approx-

imates how many times the action has been chosen. τ is

defined as follows, where γτ is the discount rate and ατ is

the learning rate.

τ(st, at) = τcurr(st, at) + τpost(st, at) (4)

τcurr(st, at) ← τcurr(st, at) + 1 (5)

τpost(st, at) ← (1− ατ )τpost(st, at)

+ ατγττ(st+1, a
sel
t+1) (6)

2.3.1 Global reference conversion (GRC)

While RS works as intended in the multi-armed bandit

problems that may be considered as a single state reinforce-

ment learning task, it is generally difficult to assign the opti-

mal aspiration to each state, when the global aspiration (for

the entire episode) is avaiable from a pioneer. The global

reference conversion (GRC) allocates optimal reference val-

ues to each state by defining the global observed expectation

EG and the global satisficing reference value ℵG defined be-

low. It is this ℵG that works as a social goal-setting trigger,

such as someone’s high performance or record breaking. EG

is defined using the temporary expectation (Etmp) which is

periodically reset.

EG ← Etmp + γGNGEG

1 + γGNG
(7)

NG ← 1 + γGNG (8)

δG = min(EG − ℵG, 0) (9)

ℵ(si) = max
a

Q(si, a)− ζ(si)δG (10)

The parameter ζ(si) is introduced to adjust the scale of the

global reference value and the Q value.

3. Task: UnsteadySwitchWorld

To test the speed and flexibility of the learning algo-

rithms, we conducted an experiment, based a task called

SwitchWorld introduced in the previous study by some

of the authors [4]. In this experiment, we used a Un-

steadySwitchWorld task in which the switches change their

places periodically. The state space of the task is shown in

Fig. 1. The red cells are where a switch is placed, and the

green cell is where the agent is placed at the initial step of

an episode. The agent can move to one of the upper, lower,

left, or right adjacent cell in an action. When the agent

passes through one of the switch cells, the agent is notified

of it (an augmented state space [5]). When the agent has

acted for 99 times, each episode ends. In order for the agent

to gain a reward, the switches must be pressed in a correct

order: switch 1, 2, and then 3. When the agent presses

the last switch, a reward 1 is given, and the state of the

switches resets. In this experiment, the agent ran 10000

episodes and calculated the average of 1000 simulations.

The switch changes its place randomly every 1000 episodes,

under the constraint that the new switch configuration is

Fig. 1: Unsteady Switch World Task

not the same at the previous one. The maximum reward in

an episode is always six, because a lap (from switch 1 to 2

to 3) takes 16 moves.

4. Simulation and Result

QL and MaxEntIRL are operated under the ε-greedy pol-

icy, in which the agent selects an action at random at prob-

ability ε and selects the greedy action a with the highest

action value Q(st, at) at probability 1− ε. ε starts from 1.0

and then decreases by 0.005 per episode, until it reaches

0.025 at episode 200. The aspiration level for RS+GRC,

ℵ(st), is assigned to each state by the Global Reference

conversion (GRC). The global aspiration for entire episodes

was ℵG = 0.06. γG was set to 0.9. The scaling parameter

ζ(si) = 1.0 for all si[7]. Learning rate α is 0.1 in all meth-

ods, and the discount rate γ is set to 0.5 for MaxEntIRL

and 0.9 for all the other algorithms. The sample size of

expert’s trajectory for MaxEntIRL is 100, the learning rate

β is 0.01 for reward function estimation and the epoch is

20. For generating the expert’s trajectories, we used the

Q values of the QL agent, which has already been learned.

However, the starting position of the expert was uniformly

randomly selected from the state space with an exception,

setting the coordinates of the left upper cell (0, 0), the (2, 5)

was avoided. The reason why cordinates (2, 5) was avoided

is because the experts trajectory starts from the coordi-

nates that is set randomly and ends at (2, 5). In addition,

the parameter θ used in the estimated reward function is

normalized while keeping the scale with the maximum value

being 0.5.

Figure 2 shows the time development of the obtained re-

ward for each episode. RS+GRC was overall capable to

obtain the rewards, while MaxEntIRL failed to obtain the

reward stably. QL can gradually adapt to the environmen-

tal change, slower than RS+GRC.

5. Discussion

From the results of this experiment, we see that

RS+GRC can learn faster than QL and MaxEntIRL. Max-

EntIRL could not cope well with unsteady environment.

Considering the learning speed of RS+GRC, RS+GRC is

conducting a search with an optimistic directionality based

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2D3-E-4-02



Fig. 2: Time development of reward per episode

on the satisficing policy and searching without much ineffi-

cient samplings, rather than ε-greedy applied to QL, which

is a random search with no directionality.

We would discuss the difference in the behavior of

RS+GRC and MaxEntIRL in the unsteady environment.

The difference between the two is that RS+GRC is given

only the reference value (ℵG = 0.06) and MaxEntIRL is

given the expert’s trajectory as the prior information. For

that reason, RS+GRC judges the superiority or inferiority

of the action sequence only with its result, compared to ℵG.

MaxEntIRL compares the whole action sequence with the

action sequence of the expert to judge the superiority or

inferiority of the action series. Therefore, RS+GRC was

able to cope with an unsteady environment because it can

truncate the existing action sequence and search for a new

action sequence if the result is lower than the reference level.

6. Conclusion

In this study, we showed that emulation implemented in

RS can learn faster than QL, and has more flexible search

capability than imitation implemented as MaxEntIRL. One

of the future tasks is to test our emulation algorithm com-

pared with imitation in continuous environments and to

clarify the functional roles of imitation and emulation learn-

ing in a broader perspective such as general machine intel-

ligence.

References

[1] Whiten, A. et al.: Emulation, imitation, over-imitation

and the scope of culture for child and chimpanzee, Phil.

Trans. of the Royal Soc. B, 364(1528), 2417–2428. 364

(2009)

[2] Takahashi, T., Kono, Y., Uragami, D., Cognitive Sat-

isficing: Bounded Rationality in Reinforcement Learn-

ing, Trans. Jap. Soc. AI, 31, 6, AI30-M 1–11. (2016)

[3] Ziebart, B.D. et al.: Maximum Entropy Inverse Rein-

forcement Learning,AAAI 2008. (2008)

[4] Shinriki, M., Kono, Y., Takahashi, T., Emulation

Learning from Pioneers, In: Proc. of JNNS 2018,

PaperID-43, P1-30 ,(2018)

[5] Levy, K.Y., Shimkin, N.: Unified Inter and Intra

Options Learning Using Policy Gradient Methods, In

EWRL, 153164, (2011)

[6] Simon, H.A.: Rational choice and the structure of the

environment, Psychological Review, Vol. 63, No. 2, pp.

129–138 (1956)

[7] Ushida, U., Kono, U., Takahashi, T., Proc. of JSAI

2017, 4C2-2in2. (2017)

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2D3-E-4-02


