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In this paper, we address the fetching task from ambiguous instructions. A typical fetching task consists of picking
up a target object specified by ambiguous instructions. We specifically propose a multimodal target-source classifier
model (MTCM) that grounds the instructions in the scene. More explicitly, MCTM can predict the likelihood of
a target object in addition to the source of this target using linguistic and visual features. Our approach improves
the accuracy of the previous state-of-the-art method for target object prediction in fetching task.

1. Introduction
Natural interactions with robots that strive to under-

stand spoken language and assist humans requires versa-
tile functions. Endowing robots with such functionality is
particularly valuable for domestic service robots (DSRs) [1]
that are expected to interact with non-expert users.

Given this background, we address the fetching task,
which is one of the most crucial manipulation tasks, from
ambiguous instructions. This task consists of picking up a
target object instructed by a user. However, understand-
ing and grounding the fetching instruction is particularly
complex because it does not follow any predefined rule: the
information may be truncated, hidden, or expressed in a
multitude of ways. The unpredictability and richness of
language make this task difficult to solve for DSRs that are
required to infer the user’s intention. .

Data-driven methods [2, 3] aim to solve similar tasks by
combining visual and linguistic knowledge. Inspired by
these approaches, we develop a solution that can under-
stand free-form language and predict the likelihood of a tar-
get object in addition to its source given the initial instruc-
tion. Our method, the multimodal target-source classifier
model (MTCM), addresses language understanding from vi-
sual and linguistic modalities.

2. Problem Statement
We aim to solve fetching task based on instructions such

as “Give me the yellow doll on the desk”. Our approach con-
sists in understanding the target object (e.g.“yellow doll”)
and the source of this target (e.g.“on the desk”). Consider-
ing environments in daily life, several grounding challenges
arise regarding understanding instructions. In particular,
users tend to use referring expressions to describe an object.
For instance, the target object in the previous example “yel-
low doll” is characterized by its color. Similarly the source
of the target object may be mentioned or not depending
on the context. For instance, “Give me the yellow doll” is
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a likely instruction when there is no ambiguity about the
source. One or several of these grounding challenges may
appear in a single instruction. To solve this problem and
the related grounding challenges, we consider the following
inputs and outputs for our system:

• Inputs: Linguistic instructions and pre-collected can-
didate target and source data.

• Output: Likelihood of the potential target object and
source of the target object.

The likelihood refers to the possibility that the candidate
object corresponds to the object in the user’s instructions.
This likelihood is expressed as a binary classification prob-
lem.

3. Proposed method
Inspired by the latest advancements in image comprehen-

sion [2], in addition to natural language understanding, we
propose the MTCM method illustrated in Fig. 1. MTCM
combines a convolutional neural network (CNN) in addition
to a long short-term memory (LSTM) network that process
the visual and linguistic inputs, respectively. The set of in-
puts of the MTCM is {xinstr,xv,xrel}, where xv denotes
the visual inputs, xinstr denotes the linguistic inputs, and
xrel denotes the relational feature inputs. Input xrel de-
notes the relational feature between the target object and
the environment, that is, the position in the scene, position
within the source, and position with respect to neighboring
objects.

Visual inputs xv correspond more explicitly to the
cropped image of target object y. A CNN is used to pro-
cess image xv. In our approach, we consider the 16-layer
network VGG16 [5] to encode each image. The output of
the fully connected layer (FC7) is used to extract visual
features.

By contrast, the linguistic features are embedded and
then encoded by a multi-layer bidirectional LSTM (Bi-
LSTM) network. Instead of directly training an embed-
ding model from scratch, we use a pre-trained sub-word
embedding model, BERT [6], to initialize the embedding
vectors. The word embedding model is then fine-tuned on
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Figure 1: Proposed method framework: the MTCM is based on a CNN-LSTM architecture to process linguistic and visual inputs. The
model predicts the likelihood of a target object using binary classification, in addition to the source of the target object. For comparison,
we also implement a matching function to directly predict the object, as performed in [4]

Table 1: Difference between (a) typical word-tokens with pre-
processing for rare and or erroneous word and (b) sub-word to-
kenization: in word representation rare words may be replaced
by <UNK> tag

Expression (a) (b)

topright object topright, object top, right, object
sprayer <UNK> spray, er
greyis bottle <UNK> , bottle grey, is, bottle

the dataset as the MTCM is trained. BERT is a language
encoding model based on bi-directional transformers. This
approach provides more flexibility and generalization abil-
ity to the LSTM network. Indeed, the undesirable effect of
rare words in the dataset is avoided because most BERT
is pre-trained on 3.5 billion words. Additionally, instead
of a word-based representation, BERT is based on the sub-
word [7]. A sub-word representation is more robust to word
misspelling in the model, as given in Table 1

The concatenation of the last hidden layers of the forward
layer and backward layer of the Bi-LSTM is extracted to
encode the linguistic inputs.

After encoding the visual, relational, and linguistic in-
puts, a common latent representation is required to com-
pare the extracted features from the CNN and LSTM. Two
multi-layer perceptrons (MLPs) are used for this purpose.
In parallel, an MLP is used to predict the source of the tar-
get object based on the output of the linguistic and visual
MLPs

Finally, the output of the MCTM is given by yR =

{ytarg,ysrc}, where ytarg is the likelihood of the target ob-
ject and ysrc is the predicted class of the target source

In the case of the binary classification, the prediction task
is solved by minimizing a cross-entropy function so that J

is
J(y) = −

∑

n

∑

j

y∗
nj log p(ynj), (1)

where y∗
nj denotes the label of the j-th dimension of the

n-th sample. The loss function JM of the network is then

given by:
JM = λ1Jtarg + λ2Jsrc (2)

where Jsrc = J(ysrc) and target Jtarg = J(ytarg) from
(1), while λ1 and λ2 are some weighting parameters. On
the other hand, a Hinge loss function is used for Jtarg

when the tasks consists in matching the most likely object
with the initial instruction. This loss consists in increas-
ing the similarity between correct pairs of linguistic and
visual/relational features and the dissimilarity between in-
correct pairs. With si as an instruction and yi a target
object, the cost function Jtarg becomes:

Jtarg =
∑

n

max(0,M + f(sn, ym)− f(sn, yn))

+ max((0,M + f(sk, yn)− f(sn, yn)), (3)

where M is the margin, and f(.) is the similarity function
(e.g. cosine similarity). The incorrect target object (ym)
and sentences (sk) are randomly sampled from the same
image as the real target object.

4. Experiments
To assess the performance of our method in a real-word

scenario, we applied the MCTM module to the PFN-PIC
dataset [4]. We used the same dataset as that in their
original paper, with 89, 861 sentences and 25, 517 bound-
ing boxes in the training set, and 898 sentences and 352

bounding boxes in the validation set. In each image, tar-
get objects were placed randomly in four boxes (see Fig.2).
These boxes were the target sources.

For the linguistic processing of the MCTM, each sub-
word was first encoded as a 1,024-sized vector using BERT.
We used the largest version of pre-trained BERT (24 layers)
considering uncased words. The embedded vectors were in-
put into a three-layer Bi-LSTM, with 1,024-sized cells. The
last hidden state of the Bi-LSTM was eventually extracted.
In parallel, the images were processed in a CNN. We used a
VGG16 pre-trained model and extracted the output of the
seventh fully connected (FC7) layer. Both linguistic and
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Table 2: Mean validation top-1 accuracy and binary on the PFNPIC data set considering a baseline method given [4], and MCTM.
The binary accuracy for several positive/negative samples ratio γ are also reported. These results are based on five trials.

Target accuracy
Method Top-1 Binary accuracy Source accuracy

γ = 1.0 γ = 0.5 γ = 0.25 γ = 0.2

Baseline (Hatori et al. [4] ) 88.0 − − − − −
Ours (MCTM) 88.8 94.5 95.4 96.1 96.3 99.8

visual/relational features were transformed by three-layer
MLPs with dimension d = 1024. We applied batch nor-
malization and the ReLU activation function for each layer
of the MLP. The third MLP that predicted the source also
had three layers and dimension d = 2048. Similar to the
previous MLPs, the ReLU activation function was used, ex-
cept for the last layer, which used a softmax function for
the prediction. Finally, the network was trained using the
Adam optimizer with an initial learning rate of 2e−4. The
weighting parameters of the loss function were set to λ1 = 1

and λ2 = 0.7

The results of our experiments are reported in Table 2.
In the first column, for a fair comparison with the state-of-
the-art method, we also provide the top-one accuracy of the
MCTM. The results over five trials of the MCTM demon-
strate that our method improved to 88.8% of the accuracy
previously obtained in [4] with a CNN-LSTM framework.

Besides, we also provide the binary accuracy of our ap-
proach. The accuracy in Table 2 is then given for differ-
ent ratio γ of correct/incorrect visual and linguistic pairs.
As expected, the accuracy of MTCM improved from 94.5%

to 96.3% by adding more negative samples. Finally, our
method is able to correctly predict the source of the target
object with an accuracy of 99.8%.

Additionally, the qualitative results of MCTM are shown
in Fig. 2, which illustrates typical true and false predictions.
In the two samples, the likelihood of each object in the
image was reported given the initial instruction: overall
accurate results were obtained. The right figure reports the
case of multiple likely objects that fit the instruction "move
the white bottle to the upper right box." Even for a human
subject, this case is difficult to solve because three white
bottle-like objects are in the scene. Semantically, the binary
likelihood of these target objects is not erroneous, given
the instruction. Interestingly, unlike K-class methods that
would only predict the most probable object, our approach
provides the most likely objects to the user, that would be
able to select the desired target object in a second hand.

5. CONCLUSION
Following the increasing demand for DSRs, we proposed

the MTCM, which can predict the likelihood of target ob-
jects and their respective source given ambiguous instruc-
tions for the picking task. Our binary target object classifier
had an accuracy of 96% and source box prediction reached
99.8%. In parallel, our results improved the state-of-the-art
baseline by 0.8% on a standard dataset.

(a) take the blue sandal an move
it to the lower left box

(b) move the white bottle to the
upper right box
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Figure 2: Predictions of the MCTM network. The likelihood is 
given for each object given the initial sentence. Targets with a 
prediction above 0.5 are considered as likely. In green the cor-
rectly labelled targets and in red the incorrectly labelled targets, 
while the target object of the instruction is in blue.
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