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Novelty-Based Pruning (NBP) is a Monte-Carlo Tree Search (MCTS) method that introduced a pruning mech-
anism based on the novelty of nodes to search more unknown nodes in limited time. When an action is chosen,
MCTS methods start a new search from a root node corresponding to the new state. However, it is not appropriate
for NBP because the new search clears all information on what sub-trees should be pruned and the information is
created again by redundant searches. This work proposes a novel method reusing a searched tree starting with a
node corresponding to the new state, which is a child of the old root node. It is expected to increase the number
of unknown nodes searched in limited time. In experiments of general video game playing, the number was slightly
increased; however, it was not significantly different from the normal NBP.
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1:
MaastCTS2 MaastCTS2 R

aliens 28.8 302.2 36.4 336.3

digdug 2.9 71.7 5.9 75.4

jaws 1.4 77.2 2.9 78.2

labyrinth 0 331.2 0 382.5

missilecommand -1.5 82.7 0.8 86.3

pacman 9.6 40.7 12.5 43.3

racebet 0.1 35.5 0.4 36.3

sheriff -0.1 107.1 1.4 111.2

survivezombies 2044.2 187.5 2694.6 201.1

waitforbreakfast 0.2 27.1 0.4 35.0

2

tick

2:

t p

aliens 0.2547 0.3194

digdug 0.0038 0.4736

jaws 0.0429 0.8269

labyrinth -∗ 0.2811

missilecommand 0.0009 0.5173

pacman 0.1965 0.3031

racebet 0.1934 0.0457

sheriff 0.0811 0.6815

survivezombies 0.3595 0.4346

waitforbreakfast 0.4433 0.4263
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p )
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