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The main objective of this paper is to analyze some variants of the classical top-trading-cycles (TTC) algorithm
for slightly modified models of the housing market. Extensions of TTC for such modified models are not necessarily
strategy-proof, as pointed out by Fujita et al. (2015), and thus some alternative analysis of agents’ selfish behavior
is needed. In this paper, the incentive ratio, originally proposed by Chen et al. (2011), of the variants of TTC
algorithm is analyzed in both (i) the multi-item exchange and (ii) an exchange model with a specific form of
externalities.

1. Introduction

Exchange of indivisible items is a fundamental problem

in the literature of economic theory, where each agent is en-

dowed with a set of indivisible item and a preference over

the items in the market, and monetary transfer is not al-

lowed. The objective is the find an exchange rule that re-

turns a socially-desirable redistribution (outcome) of items

among agents. Most researches on exchange, especially

those on the mechanism design perspective, have investi-

gated agents’ incentives, such as strategy-proofness that re-

quires no agent can benefit by misreporting its preference

to the mechanism.

The housing market [Shapley 74], is one of the well-

studied model of exchange, where each agent’s endowments

are restricted to a single item. The top-trading-cycles

(TTC) algorithm is a well-known exchange rule for the

housing market, which satisfies strategy-proofness, and re-

turns an efficient outcome in polynomial time. Further-

more, Ma showed that TTC is the only exchange rule

that satisfies, under a natural condition, those two prop-

erties [Ma 94]. Recent years, there have been several exten-

sions of TTC for various modified exchange problems, in

the fields of economics and artificial intelligence [Pápai 00,

Alcalde-Unzu 11, Aziz 12, Saban 13, Sonoda 14, Sun 15,

Sikdar 17].

Strategy-proofness is, in general, a too demanding prop-

erty, and is not compatible with optimal outcomes, e.g.,

Pareto efficient ones, in many realistic extensions, including

exchange of multiple items [Sönmez 99]. Therefore, many

researches in the literature of mechanism design have fo-

cused on developing sub-optimal mechanisms, in order to

guarantee strategy-proofness [Todo 14].

However, it is still important to analyze, under mecha-

nisms that are not strategy-proof, to what extent an agent

can benefit by his selfish behavior. In particular, mechanism

that are popular or easy-to-understand are, even if they are

not strategy-proof, more likely to be used in practice, as the

first-price auction is for selling items. One of such analysis
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is based on incentive ratio [Chen 11, Chen 17a, Chen 17b],

which quantitatively evaluates the (ratio of) possible gain

by a manipulation.

In this paper, we first algorithmically analyze the incen-

tive ratio of some TTC variants, which indicates how much

in the worst case an agent can gain by misreporting its pref-

erence under TTC. For the case of multi-item exchange, we

show that (a) the incentive ratio is unbounded in general,

and (b) it becomes 2 when the valuation is assumed to be

lexicographic. For the case of service exchange, which is a

special case of exchange with externalities, we show that

(c) the incentive ratio is unbounded, even if the valuations

have an upper bound.

2. General Model

In this section we introduce a general model of exchange.

Let N be the set of n agents, and K be the set of indivisible

items. Each agent i ∈ N has an endowment ei ⊆ K, satis-

fying
⋃

i∈N ei = K, ei �= ∅ for any i ∈ N , and ei ∩ ej = ∅
for any pair i, j ∈ N . The profile e := (ei)i∈N is called an

endowment profile. An n-partition (ai)i∈N of the set K,

satisfying
⋃

i∈N ai = K, ai �= ∅ for any i ∈ N , and and

ai ∩ aj = ∅ for any pair i, j ∈ N , is called an outcome. Let

A be the set of all outcomes. By definition, the endowment

profile e is also an outcome, i.e., e ∈ A.

Each agent i ∈ N also has a valuation function vi : A →
R>0, which assigns a non-negative value for each outcome.

The value vi(a) indicates the level of happiness for agent i

when outcome a realizes. Let V be the set of all possible

valuation functions. An exchange rule f : A × V → A is a

function that takes an endowment profile and a profile of

valuation functions as an input and returns an outcome∗1.
In the literature of mechanism design, an incentive prop-

erty called strategy-proofness has been extensively studied.

An exchange rule is said to be strategy-proof if no agent can

benefit by misreporting his valuation function, i.e., truth-

telling is a dominant strategy of the game. Formally, it

requires that ∀N , ∀K, ∀e ∈ A, ∀i ∈ N , ∀v−i ∈ V n−1,

∗1 While we restrict our attention in this paper to deterministic
exchange rules, most of the concepts defined in this paper can
easily apply for randomized exchange rules, which returns a
probability distribution over outcomes.
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∀vi ∈ V , and ∀v′i ∈ V ,

vi(f(e, (vi, v−i))) ≥ vi(f(e, (v
′
i, v−i))).

As readers may wonder, however, the condition of

strategy-proofness is quite demanding and actually very

hard to satisfy; the inequality must hold for any profile of

other agents’ valuations and any misreport of the manipu-

lator. Indeed, under very natural assumptions, strategy-

proofness, and its variants such as false-name-proofness,

are not achievable in various mechanism design prob-

lems [Gibbard 73, Satterthwaite 75, Yokoo 04, Todo 14].

Accordingly, Chen et al. [Chen 11] proposed an alterna-

tive measure, called incentive ratio, to evaluate the robust-

ness of mechanisms/rules against agents’ selfish behaviors.

Definition 1 (Incentive Ratio). For a given exchange rule

f , the incentive ratio in f is α ∈ R≥1 if α is the minimum

real number such that ∀N , ∀K, ∀e ∈ A, ∀i ∈ N , ∀v−i, ∀vi,
∀v′i,

α · vi(f(e, (vi, v−i))) ≥ vi(f(e, (v
′
i, v−i))).

Obviously, when an exchange rule f is strategy-proof, the

incentive ratio of f is one. The smaller, i.e., closer to one,

the incentive ratio is, the more robust it is against manip-

ulations (in our framework, against valuation misreports).

3. Housing Market and TTC

The classical housing market, originally proposed by

Shapley and Scarf, is represented as a special case of our

exchange problem∗2, by setting |K| = n (and thus, auto-

matically |ei| = |ai| = 1 for any i ∈ N and a ∈ A) and

vi(a) = vi(b) if and only if ai = bi for any i ∈ N and any

pair a, b ∈ A. Each outcome therefore corresponds to a per-

mutation of endowments among agents. The following algo-

rithm is called Top-Trading-Cycles (TTC in short), which is

proposed to solve the housing market problem [Shapley 74].

Definition 2 (Top-Trading-Cycles).

Step 1 Construct a DAG with two types of vertices, agents

and items, so that draw a directed edge from each agent

vertex to his favorite item vertex, and a directed edge

from each item vertex to its owner (agent) vertex. As-

sign to each agent, in each cycle, the item to which he

is pointing and remove all such item vertices and agent

vertices from the graph. Go to Step 2.

Step t(≥ 2) The algorithm halts if no agent vertex re-

mains; otherwise, each agent in the graph points to

his favorite item among the remaining ones and each

item points to its owner. Assign to each agent, in each

cycle, the item to which he points and remove all such

items and agents from the graph. Go to Step t+ 1.

It was proven that the TTC algorithm is strategy-proof,

and therefore, the incentive ratio of TTC in the housing

market is 1.

∗2 The original housing market is defined only with ordinal
preferences, rather than with valuation functions. However,
all the discussion on incentives in their paper can easily apply
for the case with valuation functions.

Figure 1: Example in Proof of Lemma 1

4. Multi-Item Exchange

Fujita et al. [Fujita 15] extended the classical housing

market to multi-item exchange problem, in which agents’

endowments are not restricted to a single item, i.e., remove

the constraints of |K| = n from the housing market.

They proposed a modification of TTC, so-called aug-

mented TTC (ATTC), that still runs in polynomial times

and always selects a core outcome. ATTC first splits each

agent i into atomic players, so that each atomic player has

the same valuation function with agent i only over single

items, and owns exactly one item from ei. ATTC then run

the TTC algorithm for the market consisting of the atomic

players. By definition, each agent finally obtains the same

number of items as his original endowment, i.e., |ai| = |ei|
for any a ∈ A and any i ∈ N . To simplify the notation,

let us focus on the following additive valuation functions:

there exists ui : K → R>0 such that vi(ai) =
∑

g∈ai
ui(g).

As they pointed out, ATTC is not strategy-proof. On

the other hand, they also pointed out by Proposition 2 in

[Fujita 18], even though ATTC is not strategy-proof, the

best item that an agent receives under truth-telling cannot

be improved by any misreport of valuation function.

Here, we provide a further observation on the manipula-

bility of ATTC: there exists a problem instance under which

an agent can improve all the other items, except for the best

one, as much as possible.

Lemma 1. For any N , there is a problem instance (K, e, v)

such that an agent i ∈ N with endowment ei ⊂ K, who

originally receives the best item and the worst |ei|−1 items,

receives the top |ei| item by misreporting valuation function.

Proof. Consider N = {1, . . . , n}, K =

{g1, g2, . . . , gn, gn+1, gn+2, . . . , g2n−2}, e = (ei)i∈N =

({g1}, {g2}, . . . , {gn, gn+1, gn+2, . . . , g2n−2}), and the

valuation functions (vi)i∈N is given as follows:

u1(g2) > u1(g2n−2) > · · ·
u2(g3) > u2(g2n−3) > · · ·
...

un−2(gn−1) > un−2(gn+1) > · · ·
un−1(gn) > · · ·
un(g1) > un(g2) > · · · > un(gn) > · · · > un(g2n−2)

Figure 1 indicates the first and second best items for each

agent except the manipulator n ∈ N .

When every agent truthfully reports their valuations, a

cycle g1 → g2 → · · · → gn → g1 is constructed at round
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1 of ATTC. In the subsequent rounds only atomic play-

ers made for agent n remain. Agent n finally obtains

{g1, gn+1, gn+2, . . . , g2n−2}, one of which is the best item

and the others are the worst n− 2 items.

Now consider the misreport v′n by agent n, associated

with u′
i given as follows:

u′
n(gn−1) > u′

n(gn−2) > · · · > u′
n(g1) > u′

n(gn) > · · ·

Under this misreport, at each round r (1 ≤ r ≤ n −
1) of ATTC, an atomic player, made for agent n, re-

ceives gn−r for item gn+r−1. Agent n thus finally obtains

{g1, g2, . . . , gn−1}, which are the best n− 1 items.

Obviously this is the best possible gain by an agent’s

valuation misreport, and thus the incentive ratio of ATTC

is given as: ∑n−1
k=1 un(gk)

un(g1) +
∑2n−2

l=n+1 un(gl)
(1)

Based on this observation, we can now analyze the incentive

ratio of ATTC in detail.

Theorem 1. When the agents’ valuation functions are ad-

ditive, the ATTC for multi-item exchange has an unbounded

incentive ratio.

Proof. For given n, the maximum value of the incen-

tive ratio, given in Eq. 1, approaches n − 1, which

realizes, for instance, when the first n − 1 values,

un(g1), . . . , un(gn−1), are close enough to one and all the

lower values, un(gn), . . . , un(g2n−2), are almost zero. The

ratio is therefore unbounded when n → ∞.

An additive valuation function is said to be lexicographic

if its associated ui satisfies the following:

∀g ∈ K,ui(g) ≥
∑

h∈K s.t. ui(g)>ui(h)

ui(h).

Considering such a valuation function is natural when

agents have extreme preferences so that their utility is de-

termined almost solely by the best item they receives, and

each of the other items he receives is considered as an ex-

tra. Under this assumption, the incentive ratio of ATTC is

slightly improved.

Theorem 2. When the agents’ valuation functions are lex-

icographic, the ATTC for multi-item exchange has the in-

centive ratio of 2.

Proof. When the valuation function un is given as

∀gk ∈ K,un(gk) = 2|K|−k,

the incentive ratio becomes

22n−3 + 22n−4 + · · ·+ 2n

22n−3 + 2n−2 + · · ·+ 20
,

which converges to 2 for n → ∞.

5. Exchange with Externalities

Considering externalities in agents’ utilities is a promis-

ing approach [Mumcu 07], as in most of the real-life market,

a person’s utility usually depends on other people’s infor-

mation/actions. However, in many mechanism design prob-

lems, including the exchange problem for housing market,

such externality in agents’ utilities causes a negative results,

such as the non-existence of strategy-proof mechanisms.

A natural approach to avoid falling into such negative

results is to focus on some specific structure of externali-

ties. The service exchange problem, proposed by Lesca and

Todo [Lesca 18] as a simple extension of the housing mar-

ket, is one of such an approach. In their model, each agent

considers both the item he receives and the agent who re-

ceives his endowment.

The service exchange problem is also a special case of

exchange problem, which can be represented by setting

|K| = n and for any i ∈ N and any pair a, b( �= a) ∈ A,

vi(a) = vi(b) if and only if both ai = bi and ∃j ∈ N such

that aj = bj = ei. In words, an agent i is indifferent be-

tween two outcomes a and b if and only if (i) he receives

the same item, and (ii) his endowment is taken by the same

agent. To simplify the model, let us focus on the follow-

ing valuation functions; there exists pi : V → R>0 and

qi : N → R>0 such that vi(a) = pi(ai)+ qi(j), where j ∈ N

is the agent who takes ei and qi(i) = 0.

One naive way to implement the idea of TTC for the ser-

vice exchange problem is to ignore the externality term qi
in agents’ valuations and focus only on the item that each

agent receives. By focusing on the receiving item, we can

guarantee that the classical TTC runs without any modifi-

cation.

The following theorem shows that the TTC for the prob-

lem has an unbounded incentive ratio.

Theorem 3. The TTC for exchange with externalities has

an unbounded incentive ratio, even if agents’ externalities,

(qi)i∈N , have an upper bound.

Proof. Consider N = {1, 2, 3}, K = {g1, g2, g3}, e =

(ei)i∈N = ({g1}, {g2}, {g3}), and the functions of manip-

ulating agent 3, p3 and q3, are given as follows:

p3(g1) = p3(g2) + ε

q3(1) � q3(2)

When both agents 1 and 2 most prefers item g3, the TTC

assigns g1 to agent 3 and g3 is assigned to agent 1, in which

agent 3’s valuation is p3(g1) + q3(1). By misreporting his

valuation, agent 3 can receive g2 and give his endowment g3
to agent 2, in which his valuation is p3(g2)+q3(2). The ratio

is therefore unbounded, since we can choose small enough

pi(1). The ratio is still unbounded when both pi and qi have

the same upper bound because, by adding more agents and

items, we may find the above case in the very last step of

TTC, where only a few items having small enough values

p for agent 3 is left in the market, which still have large

values q.
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6. Conclusions

Note that the analysis of incentive ratio still focuses

on the worst case behavior of the market/algorithm, as

the analysis of strategy-proofness does. It should be in-

teresting to theoretically analyze the average case incen-

tives [Kojima 09]. It is obvious that the TTC algorithms

cannot always achieve the optimal outcome for extensions

of , i.e., the one which maximizes social welfare which is

defined as the sum of agents’ valuations. Accordingly, an-

alyzing their approximation factors is an open question, as

several papers on both algorithms and mechanism design

have considered for various problems. Developing different

exchange rules that are still easy to understand, as well

as having a better, i.e., smaller, incentive ratio, is another

interesting direction.

Acknowledgement

This work is supported by JSPS KAKENHI Grant Num-

bers JP17H00761 and JP17H04695. The author thanks

Etsushi Fujita, Julien Lesca, Akihisa Sonoda, and Makoto

Yokoo for their helpful comments and discussion. All errors

are my own.

References

[Alcalde-Unzu 11] Alcalde-Unzu, J. and Molis, E.: Ex-

change of indivisible goods and indifferences: The Top

Trading Absorbing Sets mechanisms, Games and Eco-

nomic Behavior, Vol. 73, No. 1, pp. 1 – 16 (2011)

[Aziz 12] Aziz, H. and Keijzer, de B.: Housing Markets

with Indifferences: A Tale of Two Mechanisms, in Proc.

AAAI’12, pp. 1249–1255 (2012)

[Chen 11] Chen, N., Deng, X., and Zhang, J.: How Prof-

itable Are Strategic Behaviors in a Market?, in Proc.

the 19th Europ. Symp. Algorithms (ESA’11), pp. 106–

118 (2011)

[Chen 17a] Chen, Z., Cheng, Y., Deng, X., Qi, Q., and

Yan, X.: Agent Incentives of Strategic Behavior in Re-

source Exchange, in Proc. SAGT’17, pp. 227–239 (2017)

[Chen 17b] Chen, Z., Cheng, Y., Deng, X., Qi, Q., and

Yan, X.: Limiting User’s Sybil Attack in Resource Shar-

ing, in Proc. WINE’17, pp. 103–119 (2017)

[Fujita 15] Fujita, E., Lesca, J., Sonoda, A., Todo, T., and

Yokoo, M.: A Complexity Approach for Core-Selecting

Exchange with Multiple Indivisible Goods under Lexi-

cographic Preferences, in Proc. AAAI’15, pp. 907–913

(2015)

[Fujita 18] Fujita, E., Lesca, J., Sonoda, A., Todo, T.,

and Yokoo, M.: A Complexity Approach for Core-

Selecting Exchange under Conditionally Lexicographic

Preferences, J. Artif. Intell. Res., Vol. 63, pp. 515–555

(2018)

[Gibbard 73] Gibbard, A.: Manipulation of voting schmes,

Econometrica, Vol. 41, pp. 587–602 (1973)

[Kojima 09] Kojima, F. and Pathak, P. A.: Incentives and

Stability in Large Two-Sided Matching Markets, Amer.

Econ. Rev., Vol. 99, No. 3, pp. 608–627 (2009)

[Lesca 18] Lesca, J. and Todo, T.: Service Exchange Prob-

lems, in Proc. IJCAI-ECAI’18, pp. 354–360 (2018)

[Ma 94] Ma, J.: Strategy-proofness and the strict core

in a market with indivisibilities, Intl. J. Game Theory,

Vol. 23, No. 1, pp. 75–83 (1994)

[Mumcu 07] Mumcu, A. and Saglam, I.: The core of a hous-

ing market with externalities, Economics Bulletin, Vol. 3,

No. 57, pp. 1–5 (2007)
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