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In the sensation of tones, visions and other stimuli, the “surround inhibition mechanism” (or “lateral inhibition
mechanism”) is crucial. The mechanism enhances the signals of the strongest tone, color and other stimuli, by
reducing and inhibiting the surrounding signals, since the latter signals are less important. This surround inhibition
mechanism is well studied in the physiology of sensor systems.

The neural network with two hidden layers in addition to input and output layers is constructed; having 60
neurons (units) in each of the four layers. The label (correct answer) is prepared from an input signal by applying
seven times operations of the “Hartline mechanism”, that is, by sending inhibitory signals from the neighboring
neurons and amplifying all the signals afterwards. The implication obtained by the deep learning of this neural
network is compared with the standard physiological understanding of the surround inhibition mechanism.

1. Introduction

The inhibitory influence between different sensory recep-

tors is found in the eye of Limulus (the horseshoe crab).

Limulus has a pair of compound eyes. Each compound eye

consists of 1000 ommatidia each of which is connected to

a single nerve. Therefore, Limulus is the best creature to

study the interactions between different light censors.

Hartline and his collaborators [1], [2] found by experiment

that different ommatidia (light sensors) are interacted, giv-

ing mutual inhibition, that is, the excitation signal eA of a

sensor A is inhibited from the neighboring sensor B, follow-

ing the following linear equation:

rA = eA − KAB × (rB − r0
B) θ(rB − r0

B), (1)

rB = eB − KBA × (rA − r0
A) θ(rA − r0

A). (2)

Here, eA,B is the excitation at A and B, induced when

only A or B is stimulated. The rA,B is the response of the

sensory nerve, when they are stimulated at the same time.

The r0
A,B gives thresholds, by a step function θ(r−r0) (= 1

if r − r0 > 0, but else 0). The strength of signal from a

sensory nerve, is identified to the number of discharge of

nerve impulses per unit time.

The inhibition (kinetic) coefficient KAB gives the rate of

inhibition to the sensor A from B. If A and B are the

equal type, the reciprocal law KAB = KBA holds. Its value

depends on the pair of sensors, but is roughly 0.1 − 0.3

by experiment. In the later analysis, we use 0.25 for this

inhibition coefficient.

Suppose that the sensors, labeled by i, are lined laterally,

while the layer is labeled by � to which the sensors are

concentrated. Then, Eq. (1) becomes

ri(� + 1) =
∑

j

ri(�) − Kij (̇r − r0)j(�) θ(rj − r0
j )(�), (3)

Contact: Mamoru Sugamoto, Research and Development

Division, Apprhythm Co., Honmachi, Chuo-ku, Osaka,
541-0053 Japan, mamoru.sugamoto@gmail.com

where we consider the response rj(�) be the input signal to

a receptor j located at layer �, and ri(� + 1) is the output

signal transferred to the receptor i located at the next layer

� + 1. The 0-th layer can be the input layer, receiving the

outside stimulus, ri(0) = ei.

The same inhibition mechanism works for hearing. In

this case, signals are transferred from the cochlea where

the voice sensor are placed, to cochlear nuclei, super olivary

complex, inferior colliculus, lateral geniculate body (LGB),

before arriving at the auditory cortex. This means there

exist at least four layers between the input and output, in

which neurons are concentrated.

If we use the “rectified linear unit (ReLU)” function de-

fined by y = f(x) = ReLU(x) = x × θ(x − x0), then we

have

xi(� + 1) = xi(�) −
∑

j

Kij × f
(
(x − x0)j(�)

)
. (4)

This is identical to the neural network used by the deep

learning (DL). In DL the adjustable parameters are weights

Wij , which is identical to the (kinetic) coefficients Kij of

Hartline et al., [1]. For the human hearing, the neural net-

work having several layers are used.

Now, we are ready to investigate by deep learning (DL)

[3] how the sharpness of the contrast in brightness, color,

or sound tone can be achieved.

2. Implication by Deep Learning (DL)

We implement a neural network having two hidden layers,

and the number of neurons (units) in four layers of input,

hidden1, hidden2 and output is all 60. The 1000 training

data and the 1000 test data are prepared by random sepa-

ration from 2000 data. Each datum and its label (a correct

answer to be attained from a datum by DL) are prepared

by the Harline’s observation. Given a one dimensional data

of a certain signal (brightness or color of light, frequency of
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sound, or else), as a sum of sin functions:

X(x) =

(
5∑

n=1

an sin nx

)2

, (5)

where coefficients 0 ≤ {a1, · · · , a5} ≤ 1 are randomly gener-

ated, and x is the discretized position of neurons, having 60

points {xi = 2πi
60

|i = 0, · · · , 59}. The “Hartline operation”

X ′ = ĤX is defined by

X ′(i) = λ · ReLU{Xi − κ(Xi+1 + Xi−1)}. (6)

The label Y for a datum X is given by Y = (Ĥ)7X with

κ(= Hartline′s K) = 0.25, and λ = 2.

The running of DL for 100,000 epochs, using sigmoid

as the activation function and the full Stochastic Gra-

dient Descent method, yields the following epoch depen-

dence of the loss function defined as the squared error,

L(Xout, Y ) = 1
2N

∑N−1

n=0

∑59

i=0
(Xout−Y )2, where N = 1000

is the total number of test data.

See (Figure 1) which shows the decrease of loss function

by epochs, as well as the intermediate epochs of DL train-

ing, corresponding to the Hartline mechanism.

Figure 1: (Left): Loss as a function of epoch < 100,000;

(Right): Horizontal lines show the n-th Hartline loss

L(X
(n)
H , Y ) + 34.55 for epochs < 1,000.

The left figure in (Figure 1) shows that the loss function

decreases rapidly in the first 100 epochs, and it takes finally

34.55 at epoch 100,000 as the averaged value over the last

100 epochs.

It is important to compare the “Hartline’s mechanism” of

the surround inhibition in physiology [1], [2], with the im-

plication obtained by DL of the neural network. We choose

six intermediate outputs, {X(1), X(2), · · · , X(6)} during the

training of DL. The input datum is X(0) and the output da-

tum is Xout = X(7). As for the Hartline mechanism, it gives

the six intermediate outputs by {X(1)
H , X

(2)
H , · · · , X(6)

H },
where X

(n)
H = (Ĥ)nX(0), and X

(7)
H = Y is the label. There-

fore, it is reasonable to select six intermediate epochs of the

DL training so that L(X(n), Y ) = L(X
(n)
H , Y ) + L(Xout, Y )

holds for n = 1, 2, · · · , 6, where the last term in the r.h.s fills

a gap 34.55 existing between the loss functions of Hartline

and DL, even at 100,000 epochs’ running. From the the

training data, we select the 6 intermediate epochs. See the

right figure in (Figure 1).

The loss functions between X(n) and X
(n)
H , (n =

1, 2, · · · , 6) is a measure to understand the difference be-

tween two mechanisms, Hartline’s physiological one and

DL’s one. The data shows intermediate epochs of DL

which corresponds to the Hartline’s X
(n)
H are 8, 24, 34-

37, 84-88, 398-400, for n = 1, 2, 3, 4, 5, 6, respectively. The

mean squared errors L(X(n), X
(n)
H ) for n = 1, 2, · · · , 6 are

30004.77, 2782.63, 2298.65, 2321.01, 2402.69, 711.76, re-

spectively. They are not small. This suggests that the Hart-

line’s mechanism and the DL’s mechanism are not identical

but they may differ.

The performance can be seen visually from the following

two samples among 1,000 test data at 100,000 epoch, where

the input, the label and the output signals are depicted by

black, red and blue colors, respectively. See (Figure 2).

Figure 2: Input (black), label (red) and output (blue) sig-

nals of two sample data among 1,000 test data at 100,000

epoch.

From the samples, we can see DL acquires an ability of

making the sharp contrast to the input datum, resulting

the output datum in which the bumps are enhanced and

strengthened.

3. Conclusion

The surround inhibition mechanism of sensory nerve sys-

tem is studied by deep learning of a neural network. The

deep learning mechanism by this neural network is not nec-

essary equal to the standard one in physiology. More de-

tailed comparison between DL and the real sensory system

is necessary, using the real data of the creature.
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