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Abstract: This paper describes short-term pre-training (STPT) algorism to adaptively select an optimum learning rate (LR). 
The proposed STPT algorism is beneficial for quick model prototyping in data-parallel deep learning. It adaptively finds an 
appropriate LR from multiple LR sets by STPT, which means the multiple LRs are evaluated within the beginning few iterations 
in an epoch. The STPT short cuts the tuning process of LRs that is requested in conventional training procedure as hyper-
parameter tuning, even if the unknown models are considered. Therefore, the proposed STPT reduces computational time and 
increases throughput to find the best LR for network training. This algorism reduces the computational time by 87.5% than the 
conventional method when the eight-LR sets are evaluated using eight-parallel workers. We verified the accuracy improvement 
by 4.8 % compared with the conventional one with a reference LR of 0.1; there are no accuracy deterioration is observed. In 
this algorism, better training convergence is shown and expresses the advantage in terms of training time especially for the 
unknown models than other cases such as fixed LR. 
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 3 LR sets 

Values (a) Narrow set (b) Middle set (c) Wide set 

#1 1.25 2.50 5.00 
#2 1.17 2.00 3.67 
#3 1.08 1.50 2.33 
#4 1.00 1.00 1.00 
#5 0.95 0.85 0.80 
#6 0.90 0.70 0.60 
#7 0.85 0.55 0.40 
#8 0.80 0.40 0.20 
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for epoch in range(max_epoch + warmup_epoch) 

 if epoch < warmup_epoch 

  run warmup train with warmup_LR using data parallel 

 else  
  #initialization 

  best_accuracy = 0.0 

  bestLR = 0.0 

##---------------------------Pre-train---------------------------## 

  for LR_index in range( len( LR_set ) ) 

   new_accuracy = run pre_train with 
LR_set[ LR_index ] using data parallel 
   if new_accuracy > best_accuracy 

    bestLR = LR_set[ LR_index ] 
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