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Reinforcement learning is a powerful method to solve tasks using a reward signal; however, it struggles in sparse
reward scenarios. One solution to this problem is the use of reward shaping but, it requires complicated human
engineering in complex environments. Instead, our solution relies on exploration driven by curiosity. In this paper,
we formulate the curiosity as the ability of the agent to predict its knowledge about the task. The prediction is based
on the combination of intermediate goals and deep learning. Our end-to-end method scales to high-dimensional
state spaces such as images. As proof-of-concept, we present a preliminary implementation of our algorithm using
only raw pixels as input.

1. Introduction

Reinforcement learning (RL) methods have led to re-

markable successes in a wide variety of tasks. RL can be

used to train an algorithm to learn policies by optimizing

a reward function. For instance, they have been used in

autonomous vehicle control [Abbeel et al., 2007] or robotic

control [Levine et al., 2016]. Another significant technique

is the combination of deep neural networks and Q-learning,

resulting in “Deep Q-Learning” (DQN) [Mnih et al., 2013],

able to achieve human performance on many tasks includ-

ing Atari video games [Bellemare et al., 2015]. However, in

many real-world tasks, rewards are sparse or poorly defined,

which entails that they learn slowly.

In order to guide the agent, an additional intrinsic sig-

nal can be provided to the agent. Multiple techniques have

been tested. For example, Racaniere et al., base the ex-

ploration of the agent on the surprise - the ability of the

agent to predict future [Racanière et al., 2017]. Pathak et

al., estimate the surprise of the agent by predicting the

consequences of the actions of the agent on the environ-

ment [Pathak et al., 2017]. Namely, they use an inverse

model and the prediction error as the intrinsic reward.

Another attempt aims to predict the features of a fixed

random neural network on the observation of the agent

[Burda et al., 2018]. Nevertheless, the low sample efficiency

doesn’t show clearly how to adapt this method to large scale

tasks.

We propose an alternative solution to the curiosity mech-

anism by defining the exploration bonus as the capability

of the agent to predict the sub-tasks that it masters - the

agent learns to predict its own capabilities. We introduce

the idea of goals to automatically decompose a task into

several easier sub-tasks. Namely, given the current obser-

vation, the agent learns to predict which intermediate goals

it masters. By acquiring knowledge about its abilities, we

can improve exploration by forcing the agent to explore

unknown parts of the environment. Our method relies on
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Figure 1: The agent in a state s interacts with the environ-

ment by performing an action a and, receives an extrinsic

reward re. A policy π(st; θP ) is trained to optimize the

sum of re and rgc. The intrinsic reward rgc is generated by

the goal-based curiosity module to favor the exploration of

novel states.

two deep neural networks: one to embedded the states and

goals and the other one to predict the capabilities of the

agent. In order to measure the distance between a goal

and an observation, we base the goals and states represen-

tation on a latent variable model, a variational autoencoder

[Kingma and Welling, 2014]. In the preliminary implemen-

tation, our architecture can learn policies in large continu-

ous states spaces with sparse rewards. Note that our agent

can learn policies from raw pixels without any supervision.

2. Method

2.1 Curiosity as Reward Signal
Training an agent in a sparse reward environment is chal-

lenging since the agent generally receives no reward or a

negative reward. We can introduce a new bonus to en-

courage the agent to explore sparse reward scenarios. In

addition to the extrinsic rewards re of the environment, we

introduce a goal-based curiosity reward signal rgc (Figure

1). At time t the agent receives the sum of these two re-

wards rt = ret + rgct . To encourage the agent to explore

the environment, we design rgc to be higher in novel states

than in frequently visited states.

The policy π(st; θP ) is represented by a deep neural net-
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Figure 2: Goal-based curiosity module. The module takes as input an observation o and, at the beginning of every episode

randomly samples multiple goals. The goals and the observation are embedded during step 2, φ(g) and φ(s) respectively.

Step 3 predicts the probability that each goal is mastered and given this vector of probabilities, calculates the new reward

signal rgc. A the end of each episode, the new goals are added to the goal buffer based on the experienced states.

Figure 3: Variational Auto Encoder structure. The input

image is passed through an encoder network which outputs

the parameters μ and σ of a multivariate Gaussian distri-

bution. A latent vector is sampled and the decoder network

decodes it into an image.

works. Its parameters θP are optimized to maximize the

following equation:

max
θP

Eπ(st;θP )[
∑

t

rt] (1)

In this work, we use twin delayed deep deterministic pol-

icy gradients (TD2) [Silver et al., 2014] as policy learning

method. Our main contribution is to design a new explo-

ration mechanism, the goal-based curiosity module that we

describe in the following section. Given the current obser-

vation, the module generates a goal-based curiosity reward

signal rgc.

2.2 Goal-based Curiosity Module
We based the goal-based curiosity module (GCM) on the

following intuition. If the agent can predict whether or not

it can achieve a goal given an observation then, we can

reward more the agent when the uncertainty to solve it is

high - to force the agent to explore novel states.

In sparse reward environments, reaching the final goal

may be infrequent, entailing that for most of the episodes

the agent only experiences failures. Therefore, training a

probabilistic model for predicting if the final goal is mas-

tered is highly inaccurate. Instead, we propose to estimate

if the agent can solve multiple intermediate goals. Since

these goals are easier to master (to reach), the estimation

becomes more accurate while providing information about

the agent’s knowledge. Our model can be trained using

multiple goals which produces a vector of probabilities. The

method to select the goal is explained in Section 2.2.1.

In details, the GCM is an end-to-end module. It takes

as input the current observation and produces rgc. The

algorithm can be broken down in fours parts (Figure 2).

First, at the beginning of an episode, K goals are randomly

sampled with 1 ≤ K ∈ N. Second, at every step, the goals

and the current observation are embedded by a variational

autoencoder f : O → R
n (Figure 3). Third, the agent

predicts the probability that each goal can be achieved. Our

implementation relies on a deep predictor neural network

which predicts the probability that a goal can be reached

f̂ : Rn×R
n → [0−1]. Finally, at the end of the episode, the

GCM is updated according to the experienced observations

and the predictor neural network is retrained to fit with the

new knowledge of the agent.

To produce the reward signal and improve exploration,

we design the reward to be higher in novel states. Namely,

we take advantage of uncertainty given the probabilities

that the goals are mastered by the agent. We give details

about the reward calculation is Section 2.2.2.

2.2.1 Goals

We define the goals g ∈ G as fg : S → {0, 1} that defines

if the goal is achieved by the agent. In the case that a

goal g is solved in a state s, fg(s) = 1. In order to keep a

consistent representation, we suppose the goals as G = R
n.

Note that we assume the goal space G to be the same as

the state space S.

At each iteration, a sub-sets g′ of goals latent φ(g) are

sampled given a distribution function fp:

g′ = {φ(g) ∼ fp(g)} sample K goals ∈ G (2)
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In the current implementation, the probability of sam-

pling a goal fp(g) is uniform for all the goals. In future

work, we anticipate more complex distributions to take into

about the difficulties of the goals.

During training, the goals aim to provide additional feed-

back to the agent to improve exploration. At the end of

an episode, we add a mechanism to further enable sample-

efficient learning. In addition to the state reached at the

end of the episode, we artificially generate new goals by

randomly selecting states visited during the episode. The

new goals are stored in the replay buffer that is used to

train an RL algorithm.

2.2.2 Reward Calculation

At every time step, the deep predictor neural network

outputs the probability that the active goals are mastered

by the agent gactive = 〈p(g1, ..., gK)〉. Given these predic-

tions we define the goal-based curiosity reward:

rgc = δ × g(〈α〉 − 〈p(g1, ..., gK〉) (3)

with g the function mapping the probabilities to the re-

ward, the parameters δ the scale of the new reward, and 〈α〉
the sign of the new reward. In the current implementation,

we use α = 〈1.0〉 a uniform vector of 1 and g = max().

In other words, predicting that the agent doesn’t master

a goal will result in a higher curiosity-based reward. One is-

sue with the combination of extrinsic reward and curiosity-

based reward is the scaling of the reward which may vary

between the tasks. In order to mitigate this scaling prob-

lem, we normalize the curiosity-based reward:

rgct =
rgct

σ(Rgc)
(4)

with σ(Re) the standard deviations of the curiosity-based

reward returns.

3. Conclusion

This paper introduces a new mechanism for generating

curiosity based rewards on the idea of predicting the capa-

bilities of the agent. This allows our agent to learn policies

in sparse reward environments without human engineering.

Our model works in the latent space to generate a com-

pact representation of the states and goals which are used

by a deep neural network to predict the capabilities of the

agents. By acquiring knowledge about itself, the agent can

use its curiosity to explore unseen states of the environ-

ment. As a result, we can expect to solve a large set of

tasks requiring more supervision than the extrinsic reward

of the environment.

We are interested in testing our method on a set of tasks

such as MuJoCo, or Super Mario Bros, two sparse reward

environments. In the future, we are willing to introduce

human feedback during the choice of the goals and improve

the goal sampling method.
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