
Reducing the Number of Multiplications in

Convolutional Recurrent Neural Networks (ConvRNNs)

Daria Vazhenina Atsunori Kanemura

LeapMind Inc.

Convolutional variants of recurrent neural networks, ConvRNNs, are widely used for spatio-temporal modeling. Although
ConvRNNs are suited to model two-dimensional sequences, the introduction of convolution operation brings additional param-
eters and increases the computational complexity. The computation load can be obstacles in putting ConvRNNs in operation in
real-world applications. We propose to reduce the number of parameters and multiplications by substituting some convolutional
operations with the Hadamard product. We evaluate our proposal using the task of next video frame prediction and the Moving
MNIST dataset. The proposed method requires 38% less multiplications and 21% less parameters compared to the fully con-
volutional counterpart. In price of the reduced computational complexity, the performance measured by for structural similarity
index measure (SSIM) decreased about 1.5%. ConvRNNs with reduced computations can be used in more various situations like
in web apps or embedded systems.

1. Introduction
Convolutional recurrent neural networks (ConvRNNs) are

widely used because of their ability to model temporal informa-

tion using 2D input. Donahue et al. [2] proposed to stack CNN and

LSTM layers for sequential video processing. Xingjian et al. [6]

combined those techniques in ConvLSTM layer and showed its

effectiveness on two different tasks with 2D input and temporal

dependencies. It allowed to obtain informative representation that

improve overall model performance. Representations (or features)

of a video are useful in video contents description, activity recogni-

tion, and other tasks. ConvRNNs parse video frames sequentially

and encode frame-level information.

While lots of work were done on speeding up and improving

performance of conventional (i.e. non-convolutional) RNNs, less

attention was paid to ConvRNNs. Similar to conventional RNNs,

gated variants were proposed for their convolutional conterparts,

such as ConvLSTM [6] with three gates, ConvGRU [1] with two

gates, and reduced-gate ConvLSTM [3] with one gate, which is

variant of non-convolutional JaNet [9]. Gates are sensitive to

short-term and long-term patterns in the input and help to overcome

vanishing gradient problem. Other improvements for ConvRNNs

focused on fitting better to their target task and increased overall

model performance, but they resulted in increasing memory foot-

print, the number of parameters, and the number of floating point

multiplications [7, 10].

Recently, for conventional RNNs, Li et al. [4] proposed to re-

duce the numbers of multiplications and parameters by substituting

matrix multiplication between a weight matrix and an input vector

to the Hadamard product. It allowed to build a deeper network of

up to 21 layers and slightly outperformed state-of-the-art models

for three different tasks.

We investigate the influence of substituting convolution with the

Hadamard product in ConvLSTM, ConvGRU, and reduced-gate

LSTM. It is expected that such substitution would result in a large

performance drop. Then, instead of replacing all the convolution

operations in a network, we used the Hadamard product only in

Contact: Daria Vazhenina, LeapMind Inc., Tokyo 150-0044, Japan,

daria@leapmind.io

some parts of a network, in order to keep a good balance between

reducing the numbers of parameters and multiplications and per-

formance drops.

As an example of using ConvRNN, we selected the task of next

video frame prediction, which learns video sequence representa-

tions of individual video frames in an unsupervised manner [8].

The next frame prediction problem is useful because 1) we don’t

need to obtain lots of labeled data, which is often a difficult task

before adopting deep learning, and 2) whereas a system trained for

one specific task will learn representations for that specific task,

internal representations learned by the model for predicting next

frames will be re-usable for other tasks [8]. Also, targets in su-

pervised learning contain much less information than input data,

especially in terms of video action recognition, where there is only

one label per many frames. That is why learning how to forecast

the future of an image sequence requires the prediction model to

understand and efficiently encode the content and dynamics for a

certain period of time.

2. ConvRNNs
2.1 Basic ConvRNN architecture

The most widely used variant of ConvRNN is ConvLSTM, pro-

posed in [6], where conventional LSTM is modified by replacing

matrix multiplication with convolution and changing the shape of

input Xt to 2D from 1D. A ConvLSTM cell is described by the

following equations:

it = σ(Xt ∗ Wxi + ht−1 ∗ Whi + bi), (1)

ft = σ(Xt ∗ Wx f + ht−1 ∗ Wh f + b f ), (2)

ot = σ(Xt ∗ Wxo + ht−1 ∗ Wh0 + bo), (3)

ct = ft � ct−1 + it � tanh(Xt ∗ Wxc + ht−1 ∗ Whc + bc), (4)

ht = tanh(ct � ot ), (5)

where ∗ means convolutional operation; W· · is a set of convolu-

tional kernels; ht and ht−1 are current and previous hidden states,

respectively; it , ft , and ot are input, forget, and output gates, re-

spectively; and ct is cell output.

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2H4-E-2-05



2.2 Next video frame prediction model using ConvRNN
In unsupervised video representation model, ConvRNN cells

are combined in composite model described in [8], which has an

encoder-decoder pipeline with two different decoders termed a pre-

dictor and a reconstructor. In the composite model, several video

frames are fed into recurrent encoder and then its final hidden state,

so called a learned representation, is used as the initial hidden state

in the predictor decoder and the reconstructor decoder, while the

two decoders do not share all other parameters (e.g. weight matri-

ces). Learning the two tasks of prediction and reconstruction using

the same encoder allows us to improve overall model performance,

rather than using different encoders. The loss function is defined

to be the sum of one for the reconstructor and the other for the

predictor, and we can do backpropagation on it.

Our experiments in this paper are based on the network architec-

ture proposed in [5], where the next frame prediction pipeline has

been improved by stacking recurrent layers on the top of the CNN

layers in the encoder part and reversing those recurrent and CNN

layers in the decoder part, changing the CNN layers into so-called

deconvolution layers. This stacking technique reduces the resolu-

tion of input image frames with convolutional layers before feeding

it to the recurrent ones, thus reducing the number of parameters in

the recurrent layers. This significantly reduce mean square error

(MSE) of the model for both prediction and reconstruction tasks.

3. Proposed improvements
We investigated and analyzed replacing convolutional operation

with Hadamard product in ConvRNN cells. This idea was inspired

by IndRNN [4], which reduces the number of multiplications in

the vanilla recurrent cell. Since IndRNN was proposed for RNNs

without gates, we cannot adopt it for our purpose of improving

ConvLSTM, which includes many gates. This reduction of the

number of multiplications has not been investigated so far for gated

convolutional recurrent units.

Here is the comparison of the expected computational complex-

ity (CC; lower is better) and performance mean square error (MSE;

lower is better):

CCHadamard < CCCombi � CCBaseline,

MSEHadamard � MSECombi ≥ MSEBaseline

where the notation is as follows:

• Baseline (Conv*): The baseline model with standard Con-

vRNN structure,

• Combi (ConvIndConv*): Proposed combination of convolu-

tion and Hadamard product,

• Hadamard (ConvInd*): The model where convolution is re-

placed with Hadamard product.

Here the asterisk sign “*” means LSTM, GRU, or Janet. That

is, “ConvInd*” means ConvIndLSTM, ConvIndGRU, or ConvIn-

dJanet.

As baselines for applying Hadamard product, we used ConvL-

STM, ConvGRU, and ConvJanet. Hadamard product was used to

calculate gates and cell unit in ConvInd* models:

it = σ(Xt ∗ Wxi + ht−1 � Whi + bi), (6)

ft = σ(Xt ∗ Wx f + ht−1 � Wh f + b f ), (7)

ot = σ(Xt ∗ Wxo + ht−1 � Wh0 + bo), (8)

ct = ft � ct−1 + it � tanh(Xt ∗ Wxc + ht−1 � Whc + bc), (9)

ht = tanh(ct � ot ) (10)

and Hadamard product was used for gates calculations only in

ConvIndConv* models, so ct is calculated as follows:

ct = ft � ct−1 + it � tanh(Xt ∗ Wxc + ht−1 ∗ Whc + bc) (11)

4. Experimental results
4.1 Database description

We use the moving MNIST dataset, which has been widely used

to evaluate video frame prediction models. We used same train and

test settings as in [8]. Each sequence in this dataset consists of 20

image frames of size 64 × 64 with two random moving digits from

the MNIST dataset. The performance in next frame prediction was

measured by MSE (the low this value the better) and SSIM (the

higher this value the better) between prediction and the ground

truth [11].

4.2 Performance evaluation
We evaluated three types of ConvRNNs and their ConvInd* and

ConvIndConv* variants described in Section 3.. We considered

the number of multiplications and the number of parameters for

complexity evaluation.

As shown in Fig. 1, the model with ConvLSTM cell showed

the best performance in terms of SSIM, while the model with

ConvGRU cell was slightly better in terms of MSE. All models with

ConvInd* cell showed significant drop in performance about 30%

relative to their fully convolutional counterparts. Returning one

convolution operation in the ConvIndConv* cell allowed to reduce

performance drop to about 5% relative to their fully convolutional

counterparts.

Fig. 2 shows that the best performing model with ConvLSTM

cell requires the largest numbers of multiplications and parameters.

The model with ConvIndConvLSTM cell showed the second best

SSIM value and required about 37.5% less multiplications and

about 21% less parameters. Its relative drop of SSIM value is

1.54% and MSE is 4.2%. This shows that it is possible to use less

parameters and multiplications for gates calculations without big

loss in performance.

5. Conclusions
In this work, we compared three gated ConvRNN variants using

next video frame prediction task. We showed that it is possible to

reduce the number of parameters and multiplications in the Con-

vRNN architecture with a small drop in the performance of the

overall model. ConvInd* models provide significant reduction in

the number of parameters and multiplications, but drop in perfor-

mance of those models is pretty large. Proposed ConvIndConv*

models, where convolution operation is kept in the cell computa-

tion, allowed to achieve minor drop in performance compared to

ConvInd* models, and also kept number of parameters and multi-

plications smaller compared to Conv* models.

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2H4-E-2-05



Figure 1: ConvInd* and ConvIndConv* models performance eval-

uation in terms of MSE and SSIM.
Figure 2: ConvInd* and ConvIndConv* models performance eval-

uation in terms of number of parameters and multiplications.

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2H4-E-2-05



References
[1] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper

into convolutional networks for learning video representa-

tions. In Int. Conf. Learning Representations (ICLR), 2016.

[2] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,

S. Venugopalan, K. Saenko, and T. Darrell. Long-term re-

current convolutional networks for visual recognition and

description. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 2625–2634, 2015.

[3] N. Elsayed, A. S. Maida, and M. Bayoumi. Reduced-gate con-

volutional LSTM using predictive coding for spatiotemporal

prediction. arXiv:1810.07251, 2018.

[4] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. Independently

recurrent neural network (IndRNN): Building a longer and

deeper RNN. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 5457–5466, 2018.

[5] B. Sautermeister. Deep learning approaches to predict fu-

ture frames in videos. Master’s thesis, Technishe Universität

München, 2016.

[6] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. Wong, and

W. Woo. Convolutional LSTM network: A machine learning

approach for precipitation nowcasting. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 802–810,

2015.

[7] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W. Wong,

and W. Woo. Deep learning for precipitation nowcasting: A

benchmark and a new model. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 5617–5627, 2017.

[8] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsuper-

vised learning of video representations using LSTMs. In Int.
Conf. Machine Learning (ICML), pages 843–852, 2015.

[9] J. van der Westhuizen and J. Lasenby. The unreasonable

effectiveness of the forget gate. arXiv:1804.04849, 2018.

[10] Y. Wang, Z. Gao, M. Long, J. Wang, and P. S. Yu. Pre-

dRNN++: Towards a resolution of the deep-in-time dilemma

in spatiotemporal predictive learning. In Int. Conf. Machine
Learning (ICML), 2018.

[11] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Im-

age quality assessment: from error visibility to structural sim-

ilarity. IEEE Trans. Image Process., 13(4):600–612, 2004.

4

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2H4-E-2-05


