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With the proliferation of wearable devices and the inflow of new health data, artificial intelligence is expected
to revolutionize the field of wellness and health management by providing potential tools for analyzing harmful
conditions like prolonged stress. Currently, one of the standard measurements used by medical practitioners to
measure stress is heart rate variability (HRV), a set of numerical indices that reflect autonomic balance. However,
recent advances in machine learning have shown that learned features tend to outperform hand-crafted features.
In this work we propose a more expressive intermediate data representation based on Lomb-Scargle periodograms
combined with the feature learning capabilities of deep learning. Using stress data from naturalistic work activities,
we tested different shallow and deep learning architectures and show that significant improvements can be achieved
compared to traditional HRV indices. Results show that models trained on our spectral-temporal representation
significantly outperform models trained on traditional HRV indices for predicting naturalistic work stress.

1. Introduction

Findings from a large number of clinical studies [5, §]
have linked cardio-vascular disorders to psychological stres-
sors. In particular, long-term exposure to stressful environ-
ments, such as those commonly found in offices, has been
shown to be a major risk factor for major depressive disor-
der (MDD), a disorder that affects an estimated 350 million
people across the world [9]. In response to this, we have wit-
nessed a surge in the development of ambient intelligences
for the purpose of mental health and stress monitoring [1].

1.1 HRYV Stress Analysis

Historically, heart rate variability (HRV) spectrograms
were used by medical practitioners as the primary tool to
measure cardiac neural regulation externally. This was
brought out by findings that mental and physical states
have certain effects on cardiac rhythm that could easily and
unintrusively be measured with electrocardiographs (ECG)
[6].
connection between HRV and the sympatho-vagal stress re-

In the past few decades, studies have established the

sponse as being visible in both the time and frequency do-
mains. Through experiments and empirical anlaysis, these
works have identified indices which show high correlations
with physical and mental stress, particulary with the high
and low frequency ranges [10]. However, even now there
is no widely accepted standard for stress evaluation based
on HRV features.
found that neurobiological evidence links some components

In recent surveys [14, 7] it has been

of HRV to activity in cortical regions related to stress ap-
praisal as well as other brain mechanisms. As it stands, it
seems that one of the main challenges is identifying which
components of HRV may be relevant to evaluating stress.
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1.2 Deep Learning and Heart Rate Analysis

Traditionally, affective analysis such as those done for
stress have mostly focused towards using visual or audi-
tory measures [15], where deep learning has been found
to be effective. In recent years, others works in the field
of ECG analysis for medical applications have also pushed
for end-to-end applications of deep learning. In one of the
most prominent works [12] they used a 34-layer residual
convolutional neural network (CNN) to analyze raw ECG
sequences in order to identify 14 different types of arrhyth-
mia. Using a very large dataset of over 60,000 recordings
they were able to train a model that performed better on
average than actual cardiologists recruited for the experi-
ment. Their work demonstrates how deep learning is able to
identify structural patterns in heart rate data. In our work,
we attempt to exclude morphological patterns and instead
focus on frequency-related features of heart beats. Towards
this end we introduce the use of short-time Lomb-Scargle
(LS) spectrograms to train CNNs.

2. Methodology

This work aims to use spectral HRV data representa-
tions together with deep learning models to predict mental
stress. Specifically, we use a sliding window Lomb-Scargle
approach to build a spectrogram of heart rate in lieu of the
traditional short-term Fourier transform (STFT). Next, we
use pre-built deep models designed for image recognition
and compared them with more simplified architectures and
train them to recognize stress. In the following sections we
describe the experiments and tools used in this research.

2.1 Dataset

For the following experiments we use the same work stress
dataset introduced in a previous work [4]. It consists of
ECG recordings of subjects performing naturalistic desk

work activities in front of a PC. The dataset was gathered
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from four subjects each contributing five separate hour-long
sessions. This provided us with a total of 20 hours of ECG
data that was used for training and testing.

2.2 Signal Processing

Previous works on spectral anlaysis of HRV applied the
fast fourier transform (FFT) [17] to produce periodograms
from which the power of different frequency bands can be
measured and compared. However, one limitation of the
FFT algorithm is that it assumes that all samples used for
analysis are evenly spaced in time. This poses a funda-
mental issue for heart rate since the RR intervals used to
represent detected heart beats are not evenly sampled. A
study [2] has shown that data resampling methods used to
align RR interval data for FFT analysis can lead to arti-
facting and higher errors in the final PSD estimation. A
better alternative has been put forward in the form of the
Lomb-Scargle periodogram, a method based on FFT that
does not require evenly sampled data.
2.2.1 Lomb-Scargle Periodogram

Periodograms are some of the most basic tools used for
spectral analysis, the most common of which is the discrete
Fourier transform (DFT). The DFT can be defined for any
sampled dataset, X (¢;),7 = 1,2, ..., Ny as,

No
FTx(w) = X(t;) exp(—iwt;).
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[3] which while sufficient for calculating an accurate esti-
mation of the FFT of most signals was found to be sensitive
to noisy signals and other artifacts [16]. In practice, it is
necessary to apply additional spectral smoothing equations,
such as spectral window functions, to reduce the variances
of the spectrum. Most of these methods are designed to be
applied on evenly sampled data. Though some may also be
applied to the unevenly sampled case, such as in RR inter-
vals, it has been found that it can lead to higher error and
increased sensitivity to signal noise [11]. This can also be
mitigated by the addition of more data for calculating the
spectra as a way to taper off the signal-to-noise ratio, but
this may not be an option for data-scarce or time-intensive
domains. A reasonable alternative is the Lomb-Scargle pe-
riodogram [13], a notable method designed for use in calcu-
lating frequency spectrograms from unevenly sampled data
streams such as heart beats. The equation is based on the
FFT and is wholly similar but addresses some of the noise
sensitivity and spectral leakage issues of the standard FFT

equation. Here, the periodogram is defined as,
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with 7 defined as,
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This modified equation, outputs similar values to the
original FFT in most cases, however it has a simpler sta-
tistical behavior and is equivalent to the reduction of the
sum of squares in least-squares fitting of sin waves to data
[13]. Tt is also time-translation invariant and reduces to a
similar representation as DF'T in cases where data is evenly
spaced. This makes it ideal for HRV analysis and is the
method used in this research. The next issue is how to
tackle the non-stationary nature of heart rate. For this, we
construct spectrograms from the periodograms.

2.2.2 Spectrogram Analysis

Spectrograms are visual representations of frequency
spectra over time. They are tools that are used extensively
in applications that deal with audio and radio signals. Re-
cently, they have also seen frequent application in the anal-
ysis of physiological signals such as brainwaves and heart
rate. The most common method used for building spec-
trograms is the short-time Fourier transform (STFT). Put
simply it is built by applying the DFT over a pre-defined
window of data and sliding the windowed function over the
data series using a fixed amount of overlap. Formally, for
any series z(n) we can defined the STFT as,

Xuw(mS,w) = Z z(n)w(n — msS) exp(—jwn)

n=—oo

(5)

for analysis window w, frame index m and step size S [18].
The internal equation >_>7 __ z(n)w(n — mS) exp(—jwn)
represents the Fourier transform of x,(msS, w) and is stored
in the matrix X whose columns are Fourier periodograms
Px (w). To adapt the spectrogram to the unevenly sampled
heart rate data, we replace this equation with the Lomb-
Scargle equation,

1 [E] z(n) cosw(t; —7')}2
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In this way we mitigate the sensitivity of the standard

+

STFT while maintaining its ability to capture the nonsta-
tionary patterns in the temporal data. In effect, we end
up with a very high dimensional representation that could
potentially have more expressive and appropriate features
for detecting stress. The next step is to use machine learn-
ing to discover these features and compare the performance
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difference with models based on traditional HRV features.
Due to the 2D spatial nature of data representation, convo-
lutional neural networks should provide an efficient learning
architecture.

3.

3.1 Dataset and Models
For the following experiments, we applied a sliding win-

Experiments and Validation

dow method to the stress dataset in order to segment the
data.
ing in the future. Through empirical testing, we found
that 505-beat windows ( 6 mins) showed the best balance
between stability and expressiveness while staying above

This method also lends itself to real-time process-

the 5-minute minimum length recommended for short-term
HRYV analysis. We also applied a modal labelling scheme for
segments which overlapped between multiple labels. How-
ever, we tweaked the unimodal threshold to 70% so seg-
ments with modal valued samples greater than the thresh-
old could be labelled with the modal value, otherwise it
The final
experiment dataset was comprised of 1,500 windowed sam-

would be marked as a "transitional” segment.

ples which were either labelled based on the 4-level stress
annotation or as transitions.

For modeling, we trained perceptron and autoencoder
models using the stress HRV data to serve as baselines
and compared these to convolutional neural network (CNN)
models trained on our spectral HRV data representation.
The convolutional layers were topped with a 128-unit dense
layer to match the ones used for the non-deep HRV stress
models. For the CNN models, we tested both standard deep
learning models typically used for image classification tasks
as well as shallower CNN architectures to verify the hier-
archical feature requirements of the dataset. Performance
was validated using stratified 10-fold cross-validation.

3.2 Results and Discussion

First, we analyze the performance results for models
trained on the standard HRV features, which were 14 time
and frequency domain features, and compared them to the
deep ResNet model trained on the LS spectrum data. As
seen in Figure 1, the baseline HRV-MLP model achieved
52% test accuracy which was improved by up to 60% by
applying denoising autoencoders for more efficient latent
feature selection. These results are well-above the 20%
random classification on this 5-class dataset.
3.2.1 Deep Spectral Model

Moving over to the spectral models, ResNet50 was able
to achieve over 80% testing accuracy, which is well above
both of the traditional HRV baselines.
gains could be explained by the effective combination of

These significant

the more expressive spectral data with the feature learning
ability of deep learning algorithms. The traditional indices
used in traditional HRV analysis help humans understand
physical conditions, but they may also obfuscate some in-
tricate features that may be necessary for deeper affective
analysis. By allowing the model to learn from a spatial-
spectral representation, we are able to train a more effective

model. However, this comes at the cost of increased com-

10-fold cross-validation accuracy (%)

HRV-MLP 52.414

Figure 1: Comparison of test performance results between
models trained on standard HRV features (MLP and DA)
and the ResNet model trained on STLST heart rate spec-
trum data.
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Figure 2: Learning and test performance of ResNet50 and
the shallower 5-layer CNN model.

plexity since the standard 50-residual unit model requires
over 25 million parameters. This not only leads to higher
data requirements, but may also lead to more challenges in
interpretation and optimization.
3.2.2 Shallow Spectral Model

To help alleviate the problem of increased complexity,
we attempted to train a more compact model. For these
tests, the goal was to reduce the depth and overall com-
plexity of our model without compromising performance.
This ultimately culminated in a model featuring 5 inter-
mediate 128-filter CNN layers with BatchNorm for regular-
ization. The relatively shallow model also meant residual
units were unnecessary and training was much faster than
the deeper model. It should also be noted that tests were
also performed on shallower models below 5 layers, but this
typically lead to larger performance variations and more
noticeable overfitting. Figure 2 shows a comparison of the
learning process of both the deep and shallow models. De-
spite using less than 1 million parameters, as opposed to
the over 25 million of ResNet50, the shallow model is able
to match the performance of the much larger ResNet model
while also avoiding overfitting. Actual training time could
also reduced by up to 5x which may be useful in situations
where occasional retraining is necessary.

4. Summary and Future Work

In this work we trained a deep model of work stress us-
ing a spectral representation of heart rate extracted us-
ing short-time Lomb-Scargle transform. The experiments
showed that the deep models trained on the spectral rep-
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resentation could easily outperform those trained on the
traditional HRV features for detecting naturalistic stress
levels. Additionally, we show that even relatively shallow
models featuring at least 5 convolutional layers can match
the performance of ResNet50, this could indicate that at
least some shallow hierarchical features may be important
for effectively modelling naturalistic stress from heart rate.
In future work we plan to investigate further the specific
features learned by our model through feature activation
analysis. We also plan to train and compare the perfor-
mance of the model on other affective computing datasets
for emotion. Finally, it would benefit the affective com-
puting community greatly if we can develop optimal rep-
resentations that can enable the aggregation of data using
different devices and dataset to build a single model that
contains all the richest features for HRV analysis.
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