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with 2048-Like Games 
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2048-like games are a family of single-player stochastic puzzle games, which consist of sliding numbered-tiles that combine 
to form tiles with larger numbers. Notable examples of games in this family include Threes!, 2048, and 2584. 2048-like games 
are highly suitable for educational purposes due to their simplicity and popularity. Numerous machine learning methods have 
been proposed for 2048, which provide a good opportunity for students to gain first-hand experience in applying these 
techniques. This paper summarizes the experience of using different 2048-like games, namely Threes! and 2584, as pedagogical 
tools for teaching reinforcement learning and computer game algorithms. With two classes of graduate level students, the 
average win rates for 2584 and Threes! reached 96.1% and 93.5%, respectively. The course designs were also well received by 
students, with 4.21/5 and 4.35/5 points from student feedbacks. 

 

1. Introduction 
2048 is a single-player stochastic puzzle game introduced as a 

variant of 1024 and Threes! [Cirulli 2014]. 2048 is easy to learn 
and to play reasonably well, yet mastering the game is far from 
trivial. Many machine learning methods have been applied to 2048 
such as the well-known Temporal Difference Learning [Szubert 
2014]. As a teaching tool, 2048’s popularity can increase student 
engagement, while the existing machine learning methods for it 
provide a well-established basis to educate from. 

We have summarized the experience of using 2584, a variant of 
2048, as the pedagogical tool for teaching reinforcement learning 
and computer game algorithms [Guei 2018]. In this paper, we 
extend our previous work, propose a new course design for 
Threes! and summarize the experiences and list the differences 
between using Threes! and 2584 in the curriculum. With two 
consecutive classes of graduate level students, the average win rate 
for 2584 and Threes! student projects reached 96.1% and 93.5%. 
The course projects were also well received by students, with 
4.21/5 and 4.35/5 points from feedbacks. 

This paper is organized as follows. Section 2 introduces 2048-
like games and reviews existing related techniques. Section 3 
shows how teaching material is designed with Threes! in our 
courses, summarizes student results, and compares differences 
with previous 2584 lectures. Section 4 provides student feedback 
and makes concluding remarks. 

2. Background and Related Techniques 
In this section, we will first introduce some 2048-like games, 

then briefly review important relevant algorithms and techniques. 

2.1 Single-player 2048-like Games 
We first describe the game, 20481, and then 25842 and Threes!3, 

the first two of which are derived from Threes!. 2048 is a  
puzzle (16 grids), starting with two tiles. Each grid on the puzzle 
is either empty or contains a numbered tile with a value that is a 

power of two. The objective is to slide the puzzle such that the tiles 
merge into larger tiles. 

Upon the player sliding the puzzle, all tiles will slide to the 
specified direction as far as possible. Adjacent tiles with the same 
value, say -tile, will be merged into a larger tile, -tile, and the 
player will receive a reward . A sliding direction is illegal if the 
puzzle remains unchanged after sliding. 

The environment immediately generates a new tile after the 
player slides the puzzle. The new tile can be either a -tile or a -
tile, with the probabilities of  and , respectively. The new 
tile will be randomly placed at any empty grid.  

After the new tile has been added, the player continues to slide 
the puzzle. This process repeats until no legal direction is possible. 
The final score is the sum of rewards gained from merging. Players 
win if a -tile is generated. 

For 2584, tiles are labeled by the numbers in the Fibonacci 
series, instead of powers of two. The environment generates -
tiles and -tiles with the probabilities of  and . However, 
instead of merging tiles with the same value, two adjacent tiles 
whose values are adjacent numbers in the series are merged. 
Players win if a -tile is generated. 

Threes! is a game originally developed by Vollmer and 
Wohlwend. In Threes!, the game starts with nine initial tiles. The 
sliding distance is at most one. A -tile and a -tile can be merged 
into a -tile; for tiles with values  between , two 

-tiles can be merged into a -tile. The -tile is designed so 
that it can no longer be merged. 

In Threes!, a hint is observable for the next generated tile before 
sliding the puzzle. The generated tile will be randomly placed at a 
newly cleared empty space (generated by sliding a -tile) on the 
opposite side of the last sliding direction. The type of generated 
tiles is controlled by the so-called bag rule and bonus rule. 
Consider a bag of 12 tiles composed of equal amounts of -, -, 
and -tiles. A tile is randomly selected and removed from the bag 
during tile generation, until the bag is empty and then refilled. The 
bonus rule states that when the largest tile on the current puzzle, 
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the -tile, is at least a -tile, there is a probability of  to 
generate a bonus -tile where  and each 
possible value for  has equal probability. For the remaining 

 cases, bag tiles are generated. 
The game ends when the player has no legal direction to slide. 

The final score is the sum of  of all -tiles with . 
In this paper, players are said to win if a -tile is generated. 

2.2 Two-player 2048-like Games 
In this paper, 2048-like games are modified into a two-player 

games as follows. While one player is still called player, his 
opponent is called adversary to play the role of an antagonistic 
environment that makes the player more difficult to play, i.e., the 
player maximizes the score, while the adversary minimizes it.  

Thus, the modified two-player game begins with the adversarial 
side. First, the adversary places some tiles on an empty puzzle. 
Then, the player and the adversary take turns sliding the puzzle or 
placing a tile. The game ends when the player is unable to slide. 

2.3 Generic Framework of 2048-like Games 
All the puzzles in 2048-like games can be categorized into two 

kinds of states: before-states and after-states. An instance of a 
2048-like game begins with a special before-state called the initial 
state. The player performs an action, i.e., sliding the puzzle, to the 
before-state, upon which the before-state will transform into an 
after-state. The environment then makes changes to the after-state, 
which renders it into another before-state for the next time step. 
The game continues until reaching a terminal state, which is a 
before-state for which the player is unable to perform any actions.  

2.4 Techniques Related to 2048-like Games 

(1) Tree Search 
The original single-player 2048 is an expectimax game. In the 

case of a two-player game where the adversary can determine both 
the type and the position of new tiles, the game follows the 
minimax paradigm. Conversely, if the type of new tile is decided 
randomly and the adversary can only determine the position, the 
game conforms to the expectiminimax paradigm. In practice, 
heuristic or value functions are combined with tree search since 
there tends to be insufficient time to expand to leaf nodes.  

(2) Temporal Difference Learning 
Temporal Difference Learning (TD) is a reinforcement learning 

method [Sutton 1998] which was first applied to 2048 in 2014. 
[Szubert 2014]. The simplest TD  updates the value function 

 with the prediction error  from 
subsequent values through , where  is the 
time step,  is the learning rate, and  is the discount factor. The 
value function   can be viewed as the expected return of a 
given state . Therefore, a policy  can be derived as 

, where  is the 
probability of transition from an after-state  to a state . 

The general form, TD , updates the value function with all 
subsequent errors with a trace decay parameter . Higher  values 
increase the proportion of prediction error from more distant states 
and actions [Sutton 1998]. TD  has been successfully applied 
to 2048 [Yeh 2017] [Jaśkowski 2017]. 

Forward update and backward update are both possible for TD 
implementation. Forward update here refers to the scheme where 
all states are updated in order of an episode from initial state to 
terminal state; backward update reverses the order. Backward 
update is slightly better than forward update when the training 
episodes are the same [Matsuzaki 2017a]. Also, backward update 
is easier for students to understand and implement [Guei 2018]. 

Multi-stage Temporal Difference Learning (MS-TD) divides 
the entire episode into several stages, each with a unique function 
approximator. It has been applied to 2048 and has successfully 
reached the first-ever game with -tile by computer program 
[Wu 2014] [Yeh 2017]. Several other implementations have also 
been investigated, such as finding more optimal ways to divide 
stages [Jaśkowski 2017] [Matsuzaki 2017b]. 

Temporal Coherence Learning (TC) is a variant of TD with 
adaptive learning rates, which has been applied to 2048 
[Jaśkowski 2017]. The update amount is controlled by the 
parameter  and the coherence , where  is the TD 
error of each update. Therefore, the update amount decreases if the 
TD error  starts to oscillate between positive and negative values.  

(3) Function Approximator 
The state spaces of 2048-like games are quite large, which 

makes it unaffordable for current computers to store the entire 
state space with a direct mapping table. Therefore, a function 
approximator can be an efficient way to obtain state values.  

-tuple networks are a well-known function approximator for 
2048-like games since 2014 [Szubert 2014]. An -tuple network 
estimates the value of a state by extracting features from the state 
and accumulating feature values, where features are usually sub-
puzzles in 2048-like games. The performance of -tuple networks 
is highly correlated with feature design. Good configurations are 
not trivial, and have been investigated as a topic of research [Yeh 
2017] [Matsuzaki 2016]. Each feature maps to an entry of a lookup 
table. The value function is therefore , 
where  is the weight table,  is the total number of features, 
and  refers to the th feature. Features are updated as follows, 

.  
Deep neural networks (DNN) and convolutional neural 

networks (CNN) can also be used as function approximators for 
2048 [Guei 2016] [Wei 2019]. Compared with -tuple networks, 
DNNs usually consist of fewer weights overall, but more weights 
are involved for each output. At the time of writing, strong 2048-
like game programs currently use -tuple networks as the function 
approximator [Yeh 2017] [Jaśkowski 2017]. Using DNNs 
efficiently for 2048-like games is still an open research topic. 

3. Course Design and Student Results 
Theory of Computer Games is a course taught by Professor I-

Chen Wu at National Chiao Tung University, Hsinchu, Taiwan. 
The course is designed for graduate level students, and the 
prerequisites are Algorithms and Data Structures. Also, students 
are expected to be moderately proficient at programming. 

Students are required to develop a game-playing program as the 
term project during the semester, which spans about five months. 
The overall program is broken down into six projects, which are 
built on top of each other. In the series of projects, students are 
required to develop their program step by step. 
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In the subsequent subsections, we will first give a short 
summary of each project, and then compare the difference of using 
2584 and Threes! in the curricula for 2017 and 2018, respectively.  

 Project 1: Learning to use the framework 
 Project 2: Train the player using TD and -tuple networks 
 Project 3: Solve a reduced game by expectimax 
 Project 4: Further improve the performance of the player 
 Project 5: Design the adversarial environment 
 Project 6: Participate in the final tournament 

3.1 Learning to Use the Framework 
First of all, students need to set up the framework and prepare 

the training environment for the coming projects in two weeks. We 
provide a demo of 2048 as the framework4, where the students are 
expected to modify the rules to the target game. Since the original 
rules for Threes! is complex, we simplify them as in Table 1. 

 
Table 1. Rule simplifications in Project 1 

2584 The same as original 2584. 
Threes! Bag size is set to 3; no bonus tiles. 

New tiles can be placed at any empty position on the 
opposite side of the last sliding direction. 

3.2 Train the Player Using TD and N-tuple Networks 
Students are required to train a strong player using TD with -

tuple networks in one month. The main purpose is to ensure that 
students understand the mechanism of TD and -tuple networks.  

The environments follow that described in Table 1. We 
recommend students to start with the simplest feature design, 
which contains 4 rows and 4 columns, for a total of 8 standalone 

-tuple patterns. The initial learning rate  is 0.1. 
 

Table 2. Average win rate and -tuple in Project 2 
 Avg. win rate Avg.  for -tuples 

2584 
34 students 

96.1% ± 4.2% 
10 reached 100% 

4.6 ± 0.8 
# of { , , }-tuple: {20,7,7} 

Threes! 
43 students 

93.5% ± 11.2% 
5 reached 100% 

5.6 ± 0.8 
# of { , , }-tuple: {9,1,33} 

 
We use the win rate to analyze the performance of student 

programs. As shown in Table 2, reaching the -tile in 2584 
seems to be easier than reaching the -tile in the simplified 
version of Threes!. 

The average  of -tuples is also different. Most of the students 
applied a -tuple configuration in Threes! since it has better 
performance. However, not so many students tried -tuples in 
2584 since the tile indices can easily grow to more than 20, 
resulting in a much higher memory cost. 

3.3 Solve a Reduced Game by Expectimax 
The aim of this project is to familiarize the students with the 

expectimax paradigm. Students need to use the expectimax search 
to solve a reduced game with a puzzle size of . The time 
allocated for this project is at most one month. 

The environments are still the same. However, there is only one 
initial tile for Threes!. In project 3, student solvers are required to 
answer the expected value of given input questions. The average 
numbers of solved questions are listed in Table 3. 

Solving  Threes! seems to be harder than  2584, as 
shown in Table 3. There are two potential reasons for this. First, 

we observed that the students ran into difficulties implementing 
expectimax search with hints, which was unique to Threes!. Since 
the framework we provided was designed for 2048, students 
needed to program hint processing on their own. Second, we 
introduced some changes to Threes! in 2018 to increase the project 
difficulty, so that we can better discriminate student performance.  

 
Table 3. Average questions solved in Project 3 

 Avg. solved 
2584 

34 students 
99.9% ± 0.5% 
31 reached 100% 

Threes! 
35 students 

92.5% ± 15.5% 
24 reached 100% 

 
In 2018, students need to answer not only the expected value, 

but also the best and the worst value. The best value occurs when 
the player is extremely lucky, i.e., the environment coincidentally 
generates tiles which leads the player to the highest score under 
oracle play. The worst value is exactly the opposite. Although this 
definition is not difficult to understand, more specifications tend 
to lead to more avenues of error for students. 

3.4 Further Improve the Performance of the Player 
The objective is encouraging students to improve their player 

with optional methods. Project 4 is similar to Project 2, but with 
more stringent environments, which we show in Table 4.  

 
Table 4. Rule modifications in Project 4 

2584 -tiles and -tiles are generated with probabilities of 
0.75 and 0.25, respectively. 

Threes! Bag size and bonus tiles follow original. 
New tiles can be placed at any empty position on the 
opposite side of the last sliding direction. 

Note: Differences between Project 4 and Project 2 are in italic. 
 
Students are required to retrain their players under the new 

environments. Several possible improvements are needed to 
achieve a comparable level of performance. Regardless of the 
method chosen, Project 4 is expected to be finished in one month. 

Our first suggestion to students is adding the expectimax search 
that has already been implemented in Project 3. The second is 
using complex network structures, isomorphism of features may 
also be needed to avoid high memory usage and to speed up 
training. The third is decreasing the learning rate if they have not 
yet done so. The last suggestion is trying some advanced TD 
methods, such as using TD , TC, or MS-TD. 

 
Table 5. Average win rate, -tuple, and depth in Project 4 

 Avg. win rate Avg.  for -tuples Avg. depth* 
2584 

31 students 
82.0% ± 11.3% 

12 reached 90% 
5.5 ± 0.7 

# of { , , }-tuple: {4,8,19} 
2.6 ± 0.8 
25 applied 

Threes! 
40 students 

88.8% ± 15.1% 
26 reached 90% 

6.3 ± 0.7 
# of { , , , †}-tuple: {2,0,21,17} 

1.5 ± 0.9 
10 applied 

* The depth for no extra search is 1; for an additional 1-ply search is 3. 
† Extra encoding such as hints is counted as 1. 

 
The final results of Project 4 are shown in Table 5. Contrary to 

previous results, students got better performances in Threes!. One 
reason is that the rule changes for 2584 is much more difficult, as 

-tiles are unmergeable with neither -tiles nor other -tiles, and 
are generated with a high probability of 0.25. Another possible 
reason for this result is the usage of large networks. Many students 
encoded the hint for the next generated tile into their network, 

4 https://github.com/moporgic/2048-Framework/branches/ 
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which greatly improved the performance. Since the tile is limited 
to -tile (14th), students can also enlarge the network easily. 

Since the expectimax project for Threes! in 2018 was quite 
difficult, relatively fewer students added expectimax into their 
player. The average win rate might have been higher if expectimax 
was applied more often. 

3.5 Design the Adversarial Environment 
The objective of Project 5 is to build an adversary, which is a 

clear departure from previous projects where students work solely 
from the perspective of the player. The adversary in two-player 
Threes! can control both the type and position of a new tile, which 
conforms to the minimax paradigm. In contrast, the adversary in 
2584 can only control the position, while the type is randomly 
generated, which conforms to an expectiminimax paradigm. 

One month is given for Project 5. The best practice is retraining 
networks for player and adversary under the new paradigms. Note 
that it is possible to make an adversary by reusing the network and 
choosing the minimum value. However, the performance may 
drop slightly due to paradigm mismatch.  

 
Table 6. Average win rate, -tuple, and depth in Project 5 

 Avg. win rate Avg.  for -tuples Avg. depth* 
2584 

31 students 
87.5% ± 14.7% 

18 reached 90% 
5.5 ± 0.7 

# of { , , }-tuple: {4,7,20} 
2.9 ± 0.5 
29 applied 

Threes! 
37 students 

52.7% ± 35.6% 
9 reached 90% 

6.4 ± 0.7 
# of { , , , †}-tuple: {2,0,17,18} 

2.4 ± 0.9 
25 applied 

* The additional 1-layer search of reusing the network is not included. 
† Extra encoding of the network such as hints is counted as 1. 

 
We also grade the adversary by its win rate, defined as the rate 

at which the player loses. The results are listed in Table 6. The 
variance of adversary performance in Threes! is quite large; this 
was unexpected since the minimax setting should have been easier 
to handle than the expectiminimax setting for 2584. It is possible 
that hint processing in search is much more complex, mistakes 
were made during network reuse, or minimax search was 
implemented incorrectly. 

3.6 Participate in the Final Tournament 
All students are required to participate in the final tournament. 

To determine the result between two students, two games are 
necessary: each student acts as the player and the adversary 
exactly once. The student whose player gets the higher score wins 
and receives one point. The ranking is then determined by the total 
number of points. 

30 students participated in the 2584 tournament in 2017, and 40 
students in the Threes! tournament in 2018. The top ranked student 
got 28 points in 29 matches in 2017; the winner for 2018 got 109 
points in 117 matches for Threes!. It is worth mentioning that the 
top ranked programs adopted different strategies. The 1st place 
2584 program applied a simple -tuple network, while the 1st 
place Threes! program applied a complex -tuple network. 

Another difference between the above two tournaments was the 
wide use of advanced TD methods in 2018. Only a few students 
applied TC in 2017. However, many advanced TD methods such 
as TC, TC , MS-TD appeared in 2018. This increased the 
strength of the highest-performing programs and intensified the 
competition between students. 

4. Summary 
For the popularity and simplicity of 2048, 2048-like games have 

become a staple application for reinforcement learning in the term 
project starting from 2014. From positive student feedbacks 
(4.21/5 and 4.35/5 points), experience sharing of students5, and 
gradual improvement in program strength over years of using 
2048-like games as term projects, we think 2048-like games are 
highly suitable for teaching computer game programming 
techniques and machine learning, especially for reinforcement 
learning. It can be a good pedagogical tool to motivate young 
minds in joining our field and community.  
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