

- 1 -

Teaching Reinforcement Learning and Computer Games
with 2048-Like Games

 Hung Guei* Ting-Han Wei* I-Chen Wu*

 * Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

2048-like games are a family of single-player stochastic puzzle games, which consist of sliding numbered-tiles that combine
to form tiles with larger numbers. Notable examples of games in this family include Threes!, 2048, and 2584. 2048-like games
are highly suitable for educational purposes due to their simplicity and popularity. Numerous machine learning methods have
been proposed for 2048, which provide a good opportunity for students to gain first-hand experience in applying these
techniques. This paper summarizes the experience of using different 2048-like games, namely Threes! and 2584, as pedagogical
tools for teaching reinforcement learning and computer game algorithms. With two classes of graduate level students, the
average win rates for 2584 and Threes! reached 96.1% and 93.5%, respectively. The course designs were also well received by
students, with 4.21/5 and 4.35/5 points from student feedbacks.

1. Introduction
2048 is a single-player stochastic puzzle game introduced as a

variant of 1024 and Threes! [Cirulli 2014]. 2048 is easy to learn
and to play reasonably well, yet mastering the game is far from
trivial. Many machine learning methods have been applied to 2048
such as the well-known Temporal Difference Learning [Szubert
2014]. As a teaching tool, 2048’s popularity can increase student
engagement, while the existing machine learning methods for it
provide a well-established basis to educate from.

We have summarized the experience of using 2584, a variant of
2048, as the pedagogical tool for teaching reinforcement learning
and computer game algorithms [Guei 2018]. In this paper, we
extend our previous work, propose a new course design for
Threes! and summarize the experiences and list the differences
between using Threes! and 2584 in the curriculum. With two
consecutive classes of graduate level students, the average win rate
for 2584 and Threes! student projects reached 96.1% and 93.5%.
The course projects were also well received by students, with
4.21/5 and 4.35/5 points from feedbacks.

This paper is organized as follows. Section 2 introduces 2048-
like games and reviews existing related techniques. Section 3
shows how teaching material is designed with Threes! in our
courses, summarizes student results, and compares differences
with previous 2584 lectures. Section 4 provides student feedback
and makes concluding remarks.

2. Background and Related Techniques
In this section, we will first introduce some 2048-like games,

then briefly review important relevant algorithms and techniques.

2.1 Single-player 2048-like Games
We first describe the game, 20481, and then 25842 and Threes!3,

the first two of which are derived from Threes!. 2048 is a
puzzle (16 grids), starting with two tiles. Each grid on the puzzle
is either empty or contains a numbered tile with a value that is a

power of two. The objective is to slide the puzzle such that the tiles
merge into larger tiles.

Upon the player sliding the puzzle, all tiles will slide to the
specified direction as far as possible. Adjacent tiles with the same
value, say -tile, will be merged into a larger tile, -tile, and the
player will receive a reward . A sliding direction is illegal if the
puzzle remains unchanged after sliding.

The environment immediately generates a new tile after the
player slides the puzzle. The new tile can be either a -tile or a -
tile, with the probabilities of and , respectively. The new
tile will be randomly placed at any empty grid.

After the new tile has been added, the player continues to slide
the puzzle. This process repeats until no legal direction is possible.
The final score is the sum of rewards gained from merging. Players
win if a -tile is generated.

For 2584, tiles are labeled by the numbers in the Fibonacci
series, instead of powers of two. The environment generates -
tiles and -tiles with the probabilities of and . However,
instead of merging tiles with the same value, two adjacent tiles
whose values are adjacent numbers in the series are merged.
Players win if a -tile is generated.

Threes! is a game originally developed by Vollmer and
Wohlwend. In Threes!, the game starts with nine initial tiles. The
sliding distance is at most one. A -tile and a -tile can be merged
into a -tile; for tiles with values between , two

-tiles can be merged into a -tile. The -tile is designed so
that it can no longer be merged.

In Threes!, a hint is observable for the next generated tile before
sliding the puzzle. The generated tile will be randomly placed at a
newly cleared empty space (generated by sliding a -tile) on the
opposite side of the last sliding direction. The type of generated
tiles is controlled by the so-called bag rule and bonus rule.
Consider a bag of 12 tiles composed of equal amounts of -, -,
and -tiles. A tile is randomly selected and removed from the bag
during tile generation, until the bag is empty and then refilled. The
bonus rule states that when the largest tile on the current puzzle,

Contact: I-Chen Wu, Department of Computer Science, National
Chiao Tung University, Taiwan, +886-3-5731855, +886-3-
5733777, icwu@cs.nctu.edu.tw

1 Available at https://gabrielecirulli.github.io/2048/
2 Available at https://davidagross.github.io/2048/
3 Available at http://asherv.com/threes/ and http://threesjs.com/

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-01

- 2 -

the -tile, is at least a -tile, there is a probability of to
generate a bonus -tile where and each
possible value for has equal probability. For the remaining

 cases, bag tiles are generated.
The game ends when the player has no legal direction to slide.

The final score is the sum of of all -tiles with .
In this paper, players are said to win if a -tile is generated.

2.2 Two-player 2048-like Games
In this paper, 2048-like games are modified into a two-player

games as follows. While one player is still called player, his
opponent is called adversary to play the role of an antagonistic
environment that makes the player more difficult to play, i.e., the
player maximizes the score, while the adversary minimizes it.

Thus, the modified two-player game begins with the adversarial
side. First, the adversary places some tiles on an empty puzzle.
Then, the player and the adversary take turns sliding the puzzle or
placing a tile. The game ends when the player is unable to slide.

2.3 Generic Framework of 2048-like Games
All the puzzles in 2048-like games can be categorized into two

kinds of states: before-states and after-states. An instance of a
2048-like game begins with a special before-state called the initial
state. The player performs an action, i.e., sliding the puzzle, to the
before-state, upon which the before-state will transform into an
after-state. The environment then makes changes to the after-state,
which renders it into another before-state for the next time step.
The game continues until reaching a terminal state, which is a
before-state for which the player is unable to perform any actions.

2.4 Techniques Related to 2048-like Games

(1) Tree Search
The original single-player 2048 is an expectimax game. In the

case of a two-player game where the adversary can determine both
the type and the position of new tiles, the game follows the
minimax paradigm. Conversely, if the type of new tile is decided
randomly and the adversary can only determine the position, the
game conforms to the expectiminimax paradigm. In practice,
heuristic or value functions are combined with tree search since
there tends to be insufficient time to expand to leaf nodes.

(2) Temporal Difference Learning
Temporal Difference Learning (TD) is a reinforcement learning

method [Sutton 1998] which was first applied to 2048 in 2014.
[Szubert 2014]. The simplest TD updates the value function

 with the prediction error from
subsequent values through , where is the
time step, is the learning rate, and is the discount factor. The
value function can be viewed as the expected return of a
given state . Therefore, a policy can be derived as

, where is the
probability of transition from an after-state to a state .

The general form, TD , updates the value function with all
subsequent errors with a trace decay parameter . Higher values
increase the proportion of prediction error from more distant states
and actions [Sutton 1998]. TD has been successfully applied
to 2048 [Yeh 2017] [Jaśkowski 2017].

Forward update and backward update are both possible for TD
implementation. Forward update here refers to the scheme where
all states are updated in order of an episode from initial state to
terminal state; backward update reverses the order. Backward
update is slightly better than forward update when the training
episodes are the same [Matsuzaki 2017a]. Also, backward update
is easier for students to understand and implement [Guei 2018].

Multi-stage Temporal Difference Learning (MS-TD) divides
the entire episode into several stages, each with a unique function
approximator. It has been applied to 2048 and has successfully
reached the first-ever game with -tile by computer program
[Wu 2014] [Yeh 2017]. Several other implementations have also
been investigated, such as finding more optimal ways to divide
stages [Jaśkowski 2017] [Matsuzaki 2017b].

Temporal Coherence Learning (TC) is a variant of TD with
adaptive learning rates, which has been applied to 2048
[Jaśkowski 2017]. The update amount is controlled by the
parameter and the coherence , where is the TD
error of each update. Therefore, the update amount decreases if the
TD error starts to oscillate between positive and negative values.

(3) Function Approximator
The state spaces of 2048-like games are quite large, which

makes it unaffordable for current computers to store the entire
state space with a direct mapping table. Therefore, a function
approximator can be an efficient way to obtain state values.

-tuple networks are a well-known function approximator for
2048-like games since 2014 [Szubert 2014]. An -tuple network
estimates the value of a state by extracting features from the state
and accumulating feature values, where features are usually sub-
puzzles in 2048-like games. The performance of -tuple networks
is highly correlated with feature design. Good configurations are
not trivial, and have been investigated as a topic of research [Yeh
2017] [Matsuzaki 2016]. Each feature maps to an entry of a lookup
table. The value function is therefore ,
where is the weight table, is the total number of features,
and refers to the th feature. Features are updated as follows,

.
Deep neural networks (DNN) and convolutional neural

networks (CNN) can also be used as function approximators for
2048 [Guei 2016] [Wei 2019]. Compared with -tuple networks,
DNNs usually consist of fewer weights overall, but more weights
are involved for each output. At the time of writing, strong 2048-
like game programs currently use -tuple networks as the function
approximator [Yeh 2017] [Jaśkowski 2017]. Using DNNs
efficiently for 2048-like games is still an open research topic.

3. Course Design and Student Results
Theory of Computer Games is a course taught by Professor I-

Chen Wu at National Chiao Tung University, Hsinchu, Taiwan.
The course is designed for graduate level students, and the
prerequisites are Algorithms and Data Structures. Also, students
are expected to be moderately proficient at programming.

Students are required to develop a game-playing program as the
term project during the semester, which spans about five months.
The overall program is broken down into six projects, which are
built on top of each other. In the series of projects, students are
required to develop their program step by step.

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-01

- 3 -

In the subsequent subsections, we will first give a short
summary of each project, and then compare the difference of using
2584 and Threes! in the curricula for 2017 and 2018, respectively.

 Project 1: Learning to use the framework
 Project 2: Train the player using TD and -tuple networks
 Project 3: Solve a reduced game by expectimax
 Project 4: Further improve the performance of the player
 Project 5: Design the adversarial environment
 Project 6: Participate in the final tournament

3.1 Learning to Use the Framework
First of all, students need to set up the framework and prepare

the training environment for the coming projects in two weeks. We
provide a demo of 2048 as the framework4, where the students are
expected to modify the rules to the target game. Since the original
rules for Threes! is complex, we simplify them as in Table 1.

Table 1. Rule simplifications in Project 1

2584 The same as original 2584.
Threes! Bag size is set to 3; no bonus tiles.

New tiles can be placed at any empty position on the
opposite side of the last sliding direction.

3.2 Train the Player Using TD and N-tuple Networks
Students are required to train a strong player using TD with -

tuple networks in one month. The main purpose is to ensure that
students understand the mechanism of TD and -tuple networks.

The environments follow that described in Table 1. We
recommend students to start with the simplest feature design,
which contains 4 rows and 4 columns, for a total of 8 standalone

-tuple patterns. The initial learning rate is 0.1.

Table 2. Average win rate and -tuple in Project 2
 Avg. win rate Avg. for -tuples

2584
34 students

96.1% ± 4.2%
10 reached 100%

4.6 ± 0.8
of { , , }-tuple: {20,7,7}

Threes!
43 students

93.5% ± 11.2%
5 reached 100%

5.6 ± 0.8
of { , , }-tuple: {9,1,33}

We use the win rate to analyze the performance of student

programs. As shown in Table 2, reaching the -tile in 2584
seems to be easier than reaching the -tile in the simplified
version of Threes!.

The average of -tuples is also different. Most of the students
applied a -tuple configuration in Threes! since it has better
performance. However, not so many students tried -tuples in
2584 since the tile indices can easily grow to more than 20,
resulting in a much higher memory cost.

3.3 Solve a Reduced Game by Expectimax
The aim of this project is to familiarize the students with the

expectimax paradigm. Students need to use the expectimax search
to solve a reduced game with a puzzle size of . The time
allocated for this project is at most one month.

The environments are still the same. However, there is only one
initial tile for Threes!. In project 3, student solvers are required to
answer the expected value of given input questions. The average
numbers of solved questions are listed in Table 3.

Solving Threes! seems to be harder than 2584, as
shown in Table 3. There are two potential reasons for this. First,

we observed that the students ran into difficulties implementing
expectimax search with hints, which was unique to Threes!. Since
the framework we provided was designed for 2048, students
needed to program hint processing on their own. Second, we
introduced some changes to Threes! in 2018 to increase the project
difficulty, so that we can better discriminate student performance.

Table 3. Average questions solved in Project 3

 Avg. solved
2584

34 students
99.9% ± 0.5%
31 reached 100%

Threes!
35 students

92.5% ± 15.5%
24 reached 100%

In 2018, students need to answer not only the expected value,

but also the best and the worst value. The best value occurs when
the player is extremely lucky, i.e., the environment coincidentally
generates tiles which leads the player to the highest score under
oracle play. The worst value is exactly the opposite. Although this
definition is not difficult to understand, more specifications tend
to lead to more avenues of error for students.

3.4 Further Improve the Performance of the Player
The objective is encouraging students to improve their player

with optional methods. Project 4 is similar to Project 2, but with
more stringent environments, which we show in Table 4.

Table 4. Rule modifications in Project 4

2584 -tiles and -tiles are generated with probabilities of
0.75 and 0.25, respectively.

Threes! Bag size and bonus tiles follow original.
New tiles can be placed at any empty position on the
opposite side of the last sliding direction.

Note: Differences between Project 4 and Project 2 are in italic.

Students are required to retrain their players under the new

environments. Several possible improvements are needed to
achieve a comparable level of performance. Regardless of the
method chosen, Project 4 is expected to be finished in one month.

Our first suggestion to students is adding the expectimax search
that has already been implemented in Project 3. The second is
using complex network structures, isomorphism of features may
also be needed to avoid high memory usage and to speed up
training. The third is decreasing the learning rate if they have not
yet done so. The last suggestion is trying some advanced TD
methods, such as using TD , TC, or MS-TD.

Table 5. Average win rate, -tuple, and depth in Project 4

 Avg. win rate Avg. for -tuples Avg. depth*
2584

31 students
82.0% ± 11.3%

12 reached 90%
5.5 ± 0.7

of { , , }-tuple: {4,8,19}
2.6 ± 0.8
25 applied

Threes!
40 students

88.8% ± 15.1%
26 reached 90%

6.3 ± 0.7
of { , , , †}-tuple: {2,0,21,17}

1.5 ± 0.9
10 applied

* The depth for no extra search is 1; for an additional 1-ply search is 3.
† Extra encoding such as hints is counted as 1.

The final results of Project 4 are shown in Table 5. Contrary to

previous results, students got better performances in Threes!. One
reason is that the rule changes for 2584 is much more difficult, as

-tiles are unmergeable with neither -tiles nor other -tiles, and
are generated with a high probability of 0.25. Another possible
reason for this result is the usage of large networks. Many students
encoded the hint for the next generated tile into their network,

4 https://github.com/moporgic/2048-Framework/branches/

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-01

- 4 -

which greatly improved the performance. Since the tile is limited
to -tile (14th), students can also enlarge the network easily.

Since the expectimax project for Threes! in 2018 was quite
difficult, relatively fewer students added expectimax into their
player. The average win rate might have been higher if expectimax
was applied more often.

3.5 Design the Adversarial Environment
The objective of Project 5 is to build an adversary, which is a

clear departure from previous projects where students work solely
from the perspective of the player. The adversary in two-player
Threes! can control both the type and position of a new tile, which
conforms to the minimax paradigm. In contrast, the adversary in
2584 can only control the position, while the type is randomly
generated, which conforms to an expectiminimax paradigm.

One month is given for Project 5. The best practice is retraining
networks for player and adversary under the new paradigms. Note
that it is possible to make an adversary by reusing the network and
choosing the minimum value. However, the performance may
drop slightly due to paradigm mismatch.

Table 6. Average win rate, -tuple, and depth in Project 5

 Avg. win rate Avg. for -tuples Avg. depth*
2584

31 students
87.5% ± 14.7%

18 reached 90%
5.5 ± 0.7

of { , , }-tuple: {4,7,20}
2.9 ± 0.5
29 applied

Threes!
37 students

52.7% ± 35.6%
9 reached 90%

6.4 ± 0.7
of { , , , †}-tuple: {2,0,17,18}

2.4 ± 0.9
25 applied

* The additional 1-layer search of reusing the network is not included.
† Extra encoding of the network such as hints is counted as 1.

We also grade the adversary by its win rate, defined as the rate

at which the player loses. The results are listed in Table 6. The
variance of adversary performance in Threes! is quite large; this
was unexpected since the minimax setting should have been easier
to handle than the expectiminimax setting for 2584. It is possible
that hint processing in search is much more complex, mistakes
were made during network reuse, or minimax search was
implemented incorrectly.

3.6 Participate in the Final Tournament
All students are required to participate in the final tournament.

To determine the result between two students, two games are
necessary: each student acts as the player and the adversary
exactly once. The student whose player gets the higher score wins
and receives one point. The ranking is then determined by the total
number of points.

30 students participated in the 2584 tournament in 2017, and 40
students in the Threes! tournament in 2018. The top ranked student
got 28 points in 29 matches in 2017; the winner for 2018 got 109
points in 117 matches for Threes!. It is worth mentioning that the
top ranked programs adopted different strategies. The 1st place
2584 program applied a simple -tuple network, while the 1st
place Threes! program applied a complex -tuple network.

Another difference between the above two tournaments was the
wide use of advanced TD methods in 2018. Only a few students
applied TC in 2017. However, many advanced TD methods such
as TC, TC , MS-TD appeared in 2018. This increased the
strength of the highest-performing programs and intensified the
competition between students.

4. Summary
For the popularity and simplicity of 2048, 2048-like games have

become a staple application for reinforcement learning in the term
project starting from 2014. From positive student feedbacks
(4.21/5 and 4.35/5 points), experience sharing of students5, and
gradual improvement in program strength over years of using
2048-like games as term projects, we think 2048-like games are
highly suitable for teaching computer game programming
techniques and machine learning, especially for reinforcement
learning. It can be a good pedagogical tool to motivate young
minds in joining our field and community.

References
[Cirulli 2014] G. Cirulli, “2048, success and me”, Retrieved from

http://gabrielecirulli.com/articles/2048-success-and-me, 2014.
[Guei 2016] H. Guei, T.-H. Wei, J.-B. Huang, and I-C. Wu, “An

Empirical Study on Applying Deep Reinforcement Learning
to the Game 2048”, Workshop Neural Networks in Games in
the International Conference on Computers and Games,
Springer, 2016.

[Guei 2018] H. Guei, T.-H. Wei, and I-C. Wu, “Using 2048-like
Games as a Pedagogical Tool for Reinforcement Learning”,
International Conference on Computers and Games, Springer,
2018.

[Jaśkowski 2017] W. Jaśkowski, “Mastering 2048 with delayed
temporal coherence learning, multi-stage weight promotion,
redundant encoding and carousel shaping”, Transactions on
Computational Intelligence and AI in Games, IEEE, 2017.

[Matsuzaki 2016] K. Matsuzaki, “Systematic selection of N-tuple
networks with consideration of interinfluence for game 2048”,
Technologies and Applications of Artificial Intelligence, IEEE,
2016.

[Matsuzaki 2017a] K. Matsuzaki, “Developing a 2048 Player with
Backward Temporal Coherence Learning and Restart”,
Advances in Computer Games, Springer, 2017.

[Matsuzaki 2017b] K. Matsuzaki, “Evaluation of Multi-staging
and Weight Promotion for Game 2048”,

, 2017.
[Sutton 1998] R. S. Sutton, and A. G. Barto, “Reinforcement

learning: An introduction”, MIT press, 1998.
[Szubert 2014] M. G. Szubert, and W. Jaśkowski, “Temporal

difference learning of N-tuple networks for the game 2048”,
Computational Intelligence and Games, IEEE, 2014.

[Wei 2019] T.-J. Wei, “A Deep Learning AI for 2048”, Retrieved
from https://github.com/tjwei/2048-NN, 2019.

[Wu 2014] I-C. Wu, K.-H. Yeh, C.-C. Liang, C.-C. Chang, and H.
Chiang, “Multi-stage Temporal Difference Learning for 2048”,
Conference on Technologies and Applications of Artificial
Intelligence, Springer, 2014.

[Yeh 2017] K.-H. Yeh, I-C. Wu, C.-H. Hsueh, C.-C. Chang, C.-C.
Liang, and H. Chiang, “Multistage Temporal Difference
Learning for 2048-Like Games”, Transactions on
Computational Intelligence and AI in Games, IEEE, 2017.

5 Some experiences of students are shared (in Chinese) at
 http://blog.sharknevercries.tw/2018/01/23/2584-AI and
 https://junmo1215.github.io/tags.html#2584-fibonacci-ref.

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-01

