
Affective Tutoring for Programming Education

Thomas James Tiam-Lee Kaoru Sumi

Future University Hakodate

This article discusses the use of artificial intelligence to detect student emotions while doing coding exercises for
learning programming. Using data from programming students, we were able to build models for detecting confusion
with as high as 70.46% accuracy. We applied this in a system for programming practice that provides affective-
based feedback by offering guides and adjusting the difficulty of exercises based on the presence of confusion, and
found that students given affective feedback were able to solve more exercises and gave up less times. Finally, we
also discuss the future direction of this research by collecting a larger amount of data that can cover other affective
states and handle finer-grained detection of affect.

1. Introduction

Recently, research on intelligent tutoring systems (ITS)

have focused on modelling not only the cognitive, but also

the affective states of the students [Harley 2017]. This

is supported by studies that empirically correlate affect

with student achievement [Rodrigo 2009] and self-regulated

learning [Mega 2014]. While there have been several works

on affect modelling on traditional ITS, recognizing emotions

in complex learning tasks such as programming remains to

be challenging [Bosch 2014].

Intelligent programming tutors (IPT) are a subclass of

ITS that teach programming. In these systems, students

interact with the system mostly by writing, testing, and

debugging code to achieve certain tasks. Because of this,

there is less direct interaction between the student and the

tutor unlike that of traditional ITS. Despite this, it has been

shown that students experience a rich set of emotions while

doing coding tasks [Bosch 2013]. Thus, it is important for

IPTs to be able to model these emotions so that appropriate

responses could be made.

In this article, we discuss the use of facial features and

logs (typing, compilation) to train machine learning models

capable of recognizing academic emotions in a programming

settings. We apply our models in a system for programming

practice that offers guides and adjusts the difficulty of exer-

cises based on the presence of confusion. Then, we discuss

future work on collecting more data to handle finer-grained

detection and more affective states.

2. Data Collection and Model Training

We trained models for recognizing confusion using data

collected from 12 Filipino and 11 Japanese freshmen stu-

dents. Each student had around 2 months of programming

experience, and was taking a course on introductory pro-

gramming during the time of the data collection. Each test

subject was asked to solve a series of introductory program-

ming coding exercises, in which they had to write the body

of a function to perform a specified task. The exercises

Contact: Future University Hakodate, PhD Candidate, 116-

2 Kamedanakanocho, Hakodate, Hokkaido 041-8655,
0138-34-6444, g3117002@fun.ac.jp

covered introductory programming concepts like variables,

expressions, conditional statements, and loops.

The session lasted for 45 minutes or until all problems

have been solved. Students were not allowed to skip an ex-

ercise. We logged all typing and compilation activity and

recorded a video of the student’s face throughout the ses-

sion. After the session, each student was asked to provide

affective state annotations to the session data. The affective

state labels that we used are: engaged, confused, frustrated,

and bored. This is based on a previous data that analyzed

the common emotions that are experienced by novice pro-

grammers while coding [Bosch 2013]. Each annotation con-

sisted of the start timestamp , the end timestamp, and the

affective state label, to indicate that that emotion was felt

during that interval. The student could make as many an-

notations as he wanted, and there were no restrictions to

the length of the annotation intervals. The data collection

process resulted to around 8 hours of session data and 44

emotion annotations in total.

Majority of the labels collected were engaged and con-

fused, so we were only able to focus on these two states. We

treated each interval as a Markov chain by dividing it into a

sequence of discrete states, which may be a typing state, a

non-typing state, a compilation error state, or a compilation

with no error state. We included facial expression informa-

tion from different action units (AU) information extracted

using Affectiva SDK (https://www.affectiva.com). AUs are

a taxonomy of fundamental facial actions, such as raising

the cheek or opening the mouth. In this data collection,

five AUs were consistently found across all test subjects,

namely dimpler (AU16), lip press (AU24), lip suck (AU28),

eye widen (AU5), and mouth open (AU27). Figure 1 shows

some examples of these AUs. We used each of these AUs in

each set of Markov chains. Figure 2 shows an example of a

Markov sequence.

We trained hidden Markov models (HMM) for each affec-

tive state label, and classified unknown sequences by com-

puting for the probability that the unknown sequence was

generated by each model. Table 1 shows the accuracy of the

models using leave one out cross fold validation. True pos-

itive (TP) refers to confused intervals correctly classified.

False positive (FP) refers to confused intervals incorrectly

classified. True negative (TN) refers to engaged intervals

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-05



Figure 1: Examples of AUs

Figure 2: An example state sequence

correctly classified. False negative (FN) refers to the num-

ber of engaged intervals incorrectly classified.

Table 1: Results of leave-one-out cross fold validation
AU TP FP TN FN Acc. Kappa

no AU 14 10 14 6 63.64% 0.28

AU16 13 7 17 7 68.18% 0.35

AU24 12 6 18 8 68.18% 0.35

AU28 13 9 15 7 63.64% 0.27

AU5 9 10 11 14 45.46% -0.08

AU27 15 8 16 5 70.46% 0.41

3. Programming Practice System with
Affective Feedback

Using the models, we developed a system for coding prac-

tice. Our system is intended to be used with a web camera,

which captures a video of the student’s face. This, along

with the logs is used to determine whether the student is

more engaged or more confused. Figure 3 shows a screen-

shot of the system for programming practice. The student

solves coding exercises by writing the body of a function ac-

cording to some generated specifications. The specifications

are automatically generated by combining different compu-

tational operations like arithmetic operations, conditional

operations, and loops. The system provides an interface

for the student to write code, test it by providing inputs

to the function, and submit the code for checking. The

system can automatically check the code by comparing its

output against a set of automatically-generated test cases.

The student can move on to the next exercise once a correct

solution has been submitted. If a student is unable to solve

an exercise for 7 minutes, he is allowed to give up and get

a different exercise.

While the student is using the system, it attempts to de-

tect the presence of confusion. When confusion is detected,

it offers a guide to the student. If the student accepts the

guide, a step by step visualization of the task is displayed,

including some hints for each step. An example of the guide

is shown in Figure 4. Additionally, the system also adjusts

the level of the next exercise, measured by the number of

Figure 3: System for programming practice

Figure 4: Guide when confusion is detected

operations, based on the presence of confusion. If confusion

is detected, the level of the next exercise remains the same.

If there is no confusion detected, the level of the next exer-

cise increases. If the student gives up, the level of the next

exercise is decreased.

4. Evaluation

We evaluated the system on 35 Japanese university stu-

dents from Future University Hakodate, Japan. The stu-

dents were from different year levels, from freshmen stu-

dents to graduate school students. The students were di-

vided into two groups, labeled Mode A (17 students) and

Mode B (18 students). Students were divided such that

each group had a balanced representation in terms of year

level, age, sex, and months of programming experience.

Each student was asked to use the system for 40 minutes.

Students in Mode A used a version of the system that

does not offer any guide and does not adjust the level of

the problems even when confusion is detected. In this group

the problems were given in random difficulty. Students in

Mode B featured affective feedback, offering a guide when

confusion is detected and adjusting the level of the exercises

according to the presence of confusion. The system was

translated to Japanese for the evaluation.

We found that students who received affective feedback

were able to solve more exercises and gave up of exercises

fewer times. Figure 5 shows the number of problems solved

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-05



Figure 5: Number of solved exercises for each group

by the students in the two groups. At first glance, one

might argue that the difference is due to the fact that the

group that received affective feedback also received easier

problems because of the automated difficulty adjusting. To

investigate this, we further analyzed the data and found

that the students who received affective feedback were able

to solve more problems across problems of similar difficulty,

showing that the offering of guides has a significant effect

on the student performance. This is shown in Table 2.

Table 2: Percentage of problems solved across different diffi-

culty levels. This shows that the group that received guides

consistently outperformed the group that did not receive

guides. There were too few data for difficulty greater than

7 to perform an appropriate comparison.
Difficulty No feedback Feedback p-value

All 53.05% 90.23% 0.00016

1 55.11% 98.61% 0.00007

2 3 70.53% 97.42% 0.01

4 6 51.62% 94.42% 0.041

To evaluate the detection of confusion, we logged the in-

stances in the session where the system detected confusion.

If confusion was detected multiple times in a single exercise,

we only considered the first instance. We showed these a

replay of each of those instances starting from 30 seconds

before the confusion was detected up to the point that it

was detected. We then ask the student what he felt at that

time, to which they could respond “very confused”, “some-

what confused”, or “not confused at all”. To avoid biased

responses, the student was not informed that these points

in the session were points where the system detected confu-

sion. Overall, 77.78% of all the instances where the system

detected confusion match the actual emotion of the student

(“very confused” or “somewhat confused”).

We also asked the students to rate the exercises on a

Likert scale from 1 to 5, with 1 being “very much”, and 5

being “not at all” based on how fun the exercises were, and

how helpful the exercises were in practicing programming.

Across both groups, 62.68% of the students thought that

the exercises were “very fun” or “fun” and 68.57% of the

students thought that the exercises were “very helpful” or

“helpful”. However, we did not find any significant differ-

ence between the two groups. Although many students felt

the exercises were a bit repetitive because of their auto-

generated nature, this was a promising result.

5. Ongoing and Future Work

Although we achieved fairly good results in our experi-

ments, we also identified limitations in our models. For in-

stance, the data we have collected is not fine-grained. Since

we did not restrict the length of the intervals of the an-

notations, most students reported emotions on a long in-

tervals, resulting in coarse-grained data. We believe that

there is also value in detecting emotion on a fine-grained

level for automated tutors to respond more promptly to

students. Furthermore, since we gave the students the free-

dom to provide as many annotations as they want, we only

collected very few annotated intervals with respect to the

session length. We did not collect enough data to cover

other academic emotions such as frustration and boredom

as well. Because of these, we were unable to use certain

features that did not have enough observations in the data.

Due to these limitations, we performed another data col-

lection process. The participants are 73 students taking

up freshmen programming classes in the Philippines and

in Japan. We used the same data collection methodology,

except for the annotation part. This time, the system par-

titions the session data into intervals based on key moments

such as the start and end of a series of key presses, compi-

lation of the code, submission of the code, and the start of

a new problem. A maximum of 150 intervals were selected

and the student was asked to provide an annotation for each

for these intervals. We added a fifth label called “neutral”,

which meant that there was no apparent emotion. The av-

erage length of the intervals is 17.24 seconds, resulting in

fairly fine-grained and fixed point affect judgment data. We

were able to collect 9,702 annotated intervals across around

49 hours of session data.

We have started to perform some initial analysis on this

data, some of which are discussed in this article. We used

OpenFace [Baltruaitis 2018] this time, which is a toolkit

capable of not only extracting the presence of AUs, but

also estimate the head pose (location and rotation) and the

eye gaze. We trained different models using Weka to classify

the presence of each emotion, selecting the best model for

each task. Table 3 shows the results. In these models, we

did not treat the data as time-series for the meantime. It

can be seen that by combining face and log features, there

is potential to classify some emotions above chance levels

(κ > 0.2) in the fine-grained level.

We also looked at some correlations between certain fea-

tures and affective state occurrence. To do this, we per-

formed Wilcoxon signed-rank tests on the features and the

affective states. Some of our findings are the following: the

mean intensity of AU04 (brow lowerer) was significantly

higher in reported intervals of frustrations than in all the

other states combined (p = 0.005). Figure 6 shows examples

of AU04. This is consistent with previous studies that cor-

relate this AU with negative academic emotions. Document

changes (insertions and deletions) occurred significantly

more when students are engaged (μ = 0.77) then when

they are confused (μ = 0.44, p = 0.000000047), frustrated

(μ = 0.55, p = 0.0055) or bored (μ = 0.38, p = 0.0015),

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-05



Table 3: Accuracy and Cohen’s Kappa (in parenthesis) for Classifying the Presence and Absence of Affective States

Japanese Group Filipino Group

Features Engaged Confused Frustrated Bored Engaged Confused Frustrated Bored

pose+face 0.69 (0.39) 0.69 (0.11) 0.73 (0.13) 0.9 (0.13) 0.65 (0.28) 0.67 (0.08) 0.71 (0.16) 0.93 (0.17)

log 0.63 (0.26) 0.77 (0.01) 0.85 (0.07) 0.93 (0.00) 0.58 (0.07) 0.75 (0.00) 0.75 (0.00) 0.95 (0.00)

all 0.71 (0.42) 0.71 (0.18) 0.82 (0.27) 0.91 (0.16) 0.65 (0.30) 0.67 (0.10) 0.72 (0.22) 0.93 (0.1)

Figure 6: Prominent displays of AU04 (Brow Lowerer)

suggesting that typing is indicative of engagement. Com-

pilations occurred significantly less when students were en-

gaged (μ = 0.0037) than when they were confused (μ =

0.0086, p = 0.0005) or frustrated (μ = 0.0089, p = 0.0044).

In addition, compilations occurred significantly more when

students were frustrated than when they were bored (μ =

0.015, p = 0.0043).

6. Discussion

In this article, we trained models that classify student’s

academic emotions in the context of programming. Even

though programming is generally viewed as a serious, soli-

tary activity, it is interesting that students experience many

emotions while doing it, and that these emotions could po-

tentially be inferred through observable features on the face

and on typing logs.

So far, our research shows that adaptive feedback based

on emotion has a potential in helping students learn or

practice coding. Majority of the students reported having

fun in solving the exercises and reported that the exercises

can be helpful in programming practice, and the guides of-

fered show positive effects on the experience of each student.

However, there is still much work to be done in this field,

such as investigating how and when to respond to differ-

ent affective states, the best type of feedback, and further

improvement the model of the student’s affect.

Affect detection is generally considered to be a challeng-

ing task caused by a variety of factors such as noise, indi-

vidual differences, and the general complexities of human

behavior. However, in our research, we show that predict-

ing student emotions while engaged in a complex learning

task is possible by using a combination of observable phys-

ical features as well as log information. We believe that

this is a step in the right direction for the development of

affect-aware intelligent tutoring systems for programming.

We believe that systems that can respond to the affective

state of humans can be more effective in their interaction

with them. For example, a system that can empathize with

the student when he is frustrated can be more effective in

steering him back towards the path of motivation. Although

we have not yet explored many of these affective responses

yet, it is something that we intend to investigate as a future

direction of this work.

7. Conclusion

In this article we have summarized the research we have

done on affective tutoring systems for programming. We

discussed the models for classifying student emotion using

face and log features and an application for coding practice.

We also discussed the future possibilities and direction of

this research.

References

[Baltruaitis 2018] Baltruaitis, T., Zadeh, A., Lim, Y.C., et

al.: OpenFace 2.0: Facial Behavior Analysis Toolkit.

IEEE International Conference on Automatic Face and

Gesture Recognition, 2018.

[Bosch 2013] Bosch, N., DMello, S. and Mills, C.: Intelli-

gent tutoring systems for programming education: a

systematic review. in Proceedings of the International

Conference on Artificial Intelligence in Education, pp.

11-20, 2013.

[Bosch 2014] Bosch, N. and Chen, Y. and DMello, S.: Its

written on your face: detecting affective states from fa-

cial expressions while learning computer programming.

in Proceedings of the International Conference on In-

telligent Tutoring Systems, pp. 39-44, 2014.

[Harley 2017] Harley, J., Lajoie, S., Frasson, C., et al.: De-

veloping emotion-aware, advanced learning technolo-

gies: A taxonomy of approaches and features. Inter-

national Journal of Artificial Intelligence in Education

27(2), Springer, 2017.

[Mega 2014] Mega, C., Ronconi, L. and De Beni, R.:

What makes a good student? How emotions, self-

regulated learning, and motivation contribute to aca-

demic achievement. Journal of Educational Psychology

106(1), American Psychological Association, 2014.

[Rodrigo 2009] Rodrigo, M. M., Baker, R., Jadud, M., et

al.: Affective and behavioral predictors of novice pro-

grammer achievement. ACM SIGCSE Bulletin 41(3),

ACM, 2009.

4

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2J1-E-5-05


