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In this study, we analyze the behavior of the computational mechanism and the structure of the feature repre-
sentation space in a deep neural text-to-image generative model. This is a fundamental approach with a goal to
construct artificial general intelligence reflecting the mechanism of human intelligence. First, we explore whether the
model is capable of encoding captions and of generating valid images under the circumstance given input captions
without word boundaries. Qualitative and quantitative evaluations demonstrate that it can generate compelling
images, but the computational mechanism does not acquire the units of meaning. Secondly, we analyze the seman-
tic compositionality in the embedding space. Our experimental result suggests that the semantic compositionality
appears between words indicating positions.
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