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A large amount of research about multimodal inference across natural language and vision has been recently
developed to obtain visually grounded word and sentence representations. In this paper, we use logic-based repre-
sentations as unified meaning representations for texts and images and present an unsupervised inference system
that can effectively prove entailment relations between them. We show that by combining semantic parsing and
theorem proving, the system can handle semantically complex queries for image retrieval.

1.

Visual Entailment

Task [15]

Visual Question Answering [14]

Tally QA [7]

1:

The man playing an accordion is next

to a woman.

[9, 3]

Visual Genome [10]

Scene Graph

[8]

[17] (FOL)

(1) FOL (2)

2

2.

(FOL)

2.1

FOL

(Combinatory Categorial Grammar, CCG) [5, 16]

ccg2lambda [9, 11]∗1

ccg2lambda

FOL

FOL

part of

[17]

2.2

FOL [4]

FOL M D I

n Dn

1

• D = {d1, d2, d3, . . .}
• I(man) = {d1} , I(woman) = {d2},

I(accordion) = {d3} , . . .
• I(play) = {(d1, d3)} , . . .

∗1 https://github.com/mynlp/ccg2lambda
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M = (D, I) ∗2

FOL

FOL

[8, 13]

[12]

S A

M A

M |= A [2]

2.3

FOL

(i) FOL

(ii) FOL

2 (i)

2.4 (ii)

FOL (1)

(2)

(1)

D = {d1, . . . , dn} (N1)

(N1) entity(d1) ∧ · · · ∧ entity(dn)

D (C1)

d1, . . . , dn

(C1) ∀x(entity(x) ↔ x = d1 ∨ · · · ∨ x = dn)

(2)

I(cat) = {d1} cat(d1)

d1
∀x(cat(x) ↔ x = d1)

F 1

I(F ) = {d1, . . . , dn} (N2)

(C2)

(N2) F (d1) ∧ · · · ∧ F (dn)

(C2) ∀x.(F (x) ↔ x = d1 ∨ · · · ∨ x = dn)

2 R I(R) =

{(d1, e1), . . . (dn, en)}

(N3) R(d1, e1) ∧ · · · ∧R(dn, en)

(C3) ∀x∀y(R(x, y) ↔ (x = d1 ∧ y = e1) ∨ · · · ∨ (x =

dn ∧ y = en))

(C1)–(C3)

(Predicate Circumscription)[6]

(exhaustivity)

∗2
I(cat) = {d1} (cat, {d1}) ∈ I

1. A A ∈ P, ¬A ∈ N .

2. A A, ¬A ∈ P.

3. A ∈ P B ∈ P A ∧B, A ∨B ∈ P.

4. A ∈ N B ∈ N A ∧B, A ∨B ∈ N .

5. A ∈ N B ∈ P A → B ∈ P.

6. A ∈ P B ∈ N A → B ∈ N .

7. A ∈ P ∀xA, ∃xA ∈ P.

8. A ∈ N ∀xA, ∃xA ∈ N .

1: (P) (N )

(C1)–(C3)

(positive)

(N1)–(N3) (negative)

(C1)–(C3)

1 FOL A ∈ L
FOL L

P N L
P N A cat touches a

dog. There are two cats. ∃x∃y (cat(x)∧
dog∧ touch(x, y)) ∃x∃y (cat(x)∧ cat(x)∧x 	= y)

No cats are white. All cats are white.

¬∃x (cat(x)∧white(x)) ∀x (cat(x) → white(x))

2.4

FOL

FOL

FOL

All men are wearing caps.

There are no white mice. FOL

ccg2lambda

ccg2lambda

CCG

WordNet [1] synset

FOL

(1) (2)

(3)

(1)

(1) (1a) M =

(D, I) (1b) M (1c)
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M′ = (D′, I ′)
(1) a. D = {d1, d2} , I = {(man, {d1}), (street {d2})}

b. A man is playing music in the street.

∃x∃y∃z(man(x)∧ street(y)∧ in(x, y)∧music(z)∧
play(x, z))

c. D′ := D ∪ {d3} , I ′ := I ∪ {(music, {d3})}
music M

d3

(2) (2a)

1 (2b) 1

(2c)

(2) a. D = {d1} , I = {(cat, {d1})}
b. A cat is white.

∃x(cat(x) ∧ white(x))

c. D′ := D, I ′ := I ∪ {(white, {d1})}

1

(3c)

(3) a. D = {d1, d2, d3} , I = {(cat, {d1})}
b. A cat is white.

∃x(cat(x) ∧ white(x))

c. D′ := D, I ′ := I ∪ {(white, {d1, d2, d3})}
(3) 2

(4) a. D = {d1, d2} , I = {(man, {d1}), (guitar, {d2})}
b. A man is playing a guitar.

∃x∃y(man(x) ∧ guitar(y) ∧ play(x, y))

c. D′ := D, I ′ := I ∪ {(play, {(d1, d2)})}
2 WordNet

[17]

2

3.

3.1

2

GRIM [4]

GRIM

touch

near support occlude part of 5

2 GRIM 200

6 194

[17] [17] 19

GRIM

F

2

F

[17] 2.

2: GRIM

3.1.1

2. GRIM

F

[17]

Prover9∗3

Mace4∗3

Mace4

Vampire∗4

Vampire

3.1.2

FOL GRIM

GRIM 2

2

F

3.1.1

[17] 2 8

GRIM 200

GRIM

3.2

3

every all

not

4

Prover9

Prover9 Mace4 F1

Vampire

2

F1 0.91, 0.73, 0.81

∗3 https://www.cs.unm.edu/ mccune/prover9/
∗4 http://www.vprover.org/
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There is a cat or dog.

There are at least two cats.

Every person is touching a bicycle.

A cat is walking.

A person is wearing a hat.

2:

[17] 2 GRIM

F /

0.68 / 8.9 0.81 / 8.8 0.0 / 10.4 0.73 / 9.3 0.74 / 9.0

Circum. 0.84 / 12.1 0.95 / 9.2 0.76 / 35.0 0.88 / 13.3 0.88 / 11.9

3: Circum.

Prover9

4

5

2 2

F 0

2

3

Visual Genome [12]

man person

[17]

There is a cat which is not white. A person is riding a

bicycle. 3 3(a)

3(b) ride

(a) There is a cat which is not white.

(b) A person is riding a bicycle.

3:

4.

Prover9 12.1 9.2 35.0 13.3 11.9

+ Mace4 11.0 7.8 12.3 8.4 9.7

Vampire 9.3 9.0 10.3 9.2 9.2

4:

F

F1

0.86 0.36 0.49

5:

CCG

FOL

[12]
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