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Large crowdsourced datasets are widely used for training and evaluating neural models on recognizing textual
entailment (RTE). However, it is still unclear whether neural models can capture logical inferences, including
monotonicity reasoning, for which no large naturalistic dataset has yet been developed. To investigate this issue,
we introduce a method of creating a dataset for monotonicity reasoning by crowdsourcing and report the result
of the first run. The error analysis indicates that workers tend to provide different answers from what logical
entailment defines, for some downward monotonicity reasonings involving pragmatic reasoning.
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(2) Every [NP spectator↓]−[VP buys a movie ticket↑]+
⇒ Every [NP female spectator ] [VP buys a movie ticket ]
⇒ Every [NP specator ] [VP buys a ticket ]

downward monotone
1 downward monotone

1: downward monotone
every, all, any, few, no
not, n’t, never
deny, prohibit, avoid
absence of, lack of, prohibition
scarcely, hardly, rarely, seldom
without, except, but
if, when, in case that, provided that, unless

downward monotone
polarity

every polarity

(3) If [every [NP spectator↑]−[VP buys a ticket↓]+]−,
[that film will be sold out ]+

⇒ If [every [NP person] [VP buys a ticket ]],
[that film will be sold out ]

⇒ If [every [NP person] [VP buys a movie ticket ]],
[that film will be sold out ]
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Parallel Meaning Bank (PMB) [Abzianidze 17]
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no one, every day

500
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2:
one, body, person, people, human,
idea, money, thing, part, time,
day, week, month, year, ages, chance, wonder
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3:

upward

monotone

All men have equal rights All men have equal rights to express oneself in public
There is a cat on the chair There is a cat sleeping on the chair
If you heard her speak English, If you heard her speak English,
you would take her for an American you would take her for a native American
Dogs have all the good qualities of people Dogs and cats have all the good qualities of people
without at the same time possessing their weaknesses without at the same time possessing their weaknesses
It is not tea but coffee that I want It is not tea but coffee with milk that I want

downward

monotone

Tom hardly ever listens to music Tom hardly ever listens to rock ’n’ roll
You don’t like love stories You don’t like love stories and sad endings
Tom doesn’t like to eat fish Tom doesn’t like to eat fish cooked in restaurants
I never had a girlfriend before I never had a girlfriend taller than me before
Rock climbing without proper equipment is dangerous Rock climbing without proper equipment of security is dangerous

and or
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3 40.1
2 55.7
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5:
upward / (%) downward / (%) / (%)

3 1069 (7.0) 2285 (14.9) 3354 (21.9)
2 1814 (11.8) 2301 (15.0) 4115 (26.8)
1 2295 (15.0) 1915 (12.5) 4210 (27.5)

1998 (27.8) 1652 (10.8) 3650 (37.8)
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upward / (%) downward / (%)

1069 (7.0) 2285 (14.9)
1650 (10.8) 937 (6.1)
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300

3

kid child

(4) T : Tom is no longer a kid
⇒ H: Tom is no longer a child

problem
at all problem

(5) T : That should be no problem
⇒ H: That should be no problem at all

or strangers

or 2

(6) T : Tom doesn’t trust strangers
� H: Tom doesn’t trust acquaintances or strangers

4.4

6
300

cucumber salad without lettuce
cucumber salad with lettuce

(7) T : A horse doesn’t eat cucumber salad
⇒ H: A horse doesn’t eat cucumber salad

without lettuce

H

everyone wearing
a blue hat (presupposition)

(8) T : I can’t remember everyone
⇒ H: I can’t remember everyone wearing a blue hat
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