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Emoji are among the most widely used communication tools worldwide. Because the number of emoji increases
every year and there are 82 face emoji, it might be difficult for users to select an appropriate emoji immediately.
Moreover, it is troublesome to continue designing new emoji. Therefore, the aim of the present study is to generate
an emoji based on input text automatically to facilitate easier communication and eliminate the process of designing
new emoji. The proposed model employs conditional variational autoencoders (CVAE), quasi-recurrent neural
networks (QRNN) as the text encoder, and the pre-trained word vector GloVe to the embedding layer connected to
the text encoder. In the experiments described herein, it will be observed that the proposed method can generate
an emoji that corresponds to an input caption, and output image quality is improved using GloVe.
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