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The fluctuation of an RR interval (RRI) on an electrocardiogram (ECG) is called heart rate variability (HRV).
Since HRV reflects the activities of the autonomous nervous system, HRV analysis has been used for health moni-
toring systems. However, the performance of health monitoring systems using HRV features is easily deteriorated
by arrhythmias. The present work focuses on premature atrial contraction (PAC) that many healthy people have.
To modify RRI data with PAC, the present work proposes a new method based on a denoising autoencoder (DAE),
referred to as DAE-based RRI modification (DAE-RM). The proposed method aims to correct the disturbed RRI
data by regarding PAC as artifacts. The performance of DAE-RM was evaluated by its application to RRI data
which contains artificial PAC (PAC-RRI). The result showed that DAE-RM successfully modified PAC-RRI data.
The root means squared error (RMSE) of the modified RRI was improved by 27.4% from the PAC-RRI. The
proposed DAE-RM has potential for realizing precise health monitoring systems which use HRV analysis.
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Algorithm 1 DAE-RM

1: while do

2: Collect the newly measured tth RRI xt.

3: Store xt to the buffer in the FIFO manner.

4: if PAC detection then

5: Wait the next t+1th to t+T+P−1th RRI xt+1, · · ·,
xt+T−1, · · ·, xt+T+P−1.

6: Extract the previous P RRI xt−P , · · · , xt−1 from

the buffer.

7: Construct the RRI subsequence to be modified:

xs = [xt−P , · · · , xt, · · · , xt+T−1, · · · , xt+T+P−1].

8: Calculate the mean of xs, x̄s.

9: xs = xs − x̄s.

10: Get the modified RRI subsequence x̂s by inputting

xs to the trained DAE.

11: x̂s = x̂s + x̄s.

12: d =
∑

x̂s −
∑

xs.

13: Replace xs to x̂s.

14: Construct the RRI subsequence to be compen-

sated:

xD = [xt+T+P , · · · , xt+T+P+D−1].

15: xD = xD − (d/D)1D.

16: else

17: Wait until the next RRI data xt+1 is measured.

18: end if

19: end while
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