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Lesion detection in computer tomography (CT) images using deep neural networks (DNN) have been researched
in computer-aided detection area. A dataset of large-scale annotated CT images, called DeepLesion, has also been
published. However, the conventional lesion detection method needs many false positives per a image (FPI) to
realize high sensitivity. Besides, it uses a constant CT value for all images in DeepLesion, thus there is a divergence
from the medical site. On the other hand, one after another object detection methods have been proposed in the
DNN community. In this study, we carried out experiments for FPI to decrease using You Only Look Once version
3; a novel object detection method. We also use medical setting CT value each image to bring it closer to the
site. The experimental results show that our method is more accurate than conventional one in the sense of the
sensitivity given same average FPI.
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