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Intention recognition is the task of inferring the intentions and goals of an agent. Intention recognition has many
applications. Especially, it can be very useful in the context of intelligent personal assistants like robots or mobile
applications, smart environments, and monitoring user needs. We present a method to infer the possible goals of
an agent by observing him in a series of successful attempts to reach them. We model this problem as a case of
concept learning and propose an algorithm to produce concise hypotheses. However, this first proposal does not
take into account the sequential nature of our observations and we discuss how we can infer better hypotheses
when we can make some assumption about the behavior of the agents and use background knowledge about the
dynamics of the environment. Then we talk about future work to improve our method.

1. Introduction

We are entering an era where new technologies are in-

creasingly present, and soon artificial intelligence will be ev-

erywhere. Home automation, robotics, intelligent personal

assistants, they will soon be interacting with humans on a

daily basis. But for this, we need an artificial intelligence

able to understand and interpret human’s intention, which

is not trivial. Even currently, there are many cases where

the knowledge of an agent’s intentions is useful, for cooper-

ation or competition in a multi-agent system or even for a

smart-phone application which tries to help the user to do

something. The ISS-CAD problem [E-Martin et al., 2015]

is a good illustration of this problem, where a free-flying

robot is observing an astronaut performing a task in the

International Space Station (ISS) and he has to help him.

This problem is called ”Plan recognition” or ”Intention

recognition” and has been investigated in AI research and

has many applications. [Schmidt et al., 1978] were the first

ones to introduce the problem and treat it from a psy-

chological point of view. [Charniak and Goldman, 1993]

use Bayesian models and [Geib and Goldman, 2009] use

also a probabilistic algorithm for the plan recognition.

[Singla and Mooney, 2011, Ha et al., 2011] mix probabilis-

tic and logic approaches, they found a very interesting field

of application for plan recognition, which is digital games.

[Carberry, 2001] describes the plan recognition problem

and surveyed the current ways to tackle this problem. In

this paper, we focus on a sub-field of intention recognition

which is called ”Goal-recognition” and which concern

understanding of the goals of an agent several related re-

cent work [Cardona-Rivera and Michael Young, 2017,

E-Martin and Smith, 2017, Mirsky et al., 2017,

Goldman et al., 2018, Vered et al., 2018] show that

goal recognition is growing of interest.

However, there are only few approaches using proposi-
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tional logic for goal recognition. It is this lack of literature

that has led us to focus our work on this aspect of the goal

recognition problem. [Hong, 2001] use propositional logic

but he combines this to a graph representation, we use a

different approach which consist of combining propositional

logic and concept learning. We are among the first to do it.

We try to guess the goal of the agent, the state of things

that the agent is trying to achieve. Indeed, many previous

work try to solve the plan recognition problem by using a

set of possible goals for the agent and try to guess which

one is more likely, as it is the case for example in the work

of [Lang, 2004]. But often they assume that this set of pos-

sible goals is given, which is usually not the case.

In this paper, we will talk about the method to infer the

possible goals of an agent by using concept learning that

we introduced in our previous work [Lorthioir et al., 2018].

We review our method and describe the future extensions of

this one. First, Section 2. will explain how to formalize the

problem of inferring goals from the observation of successful

scenarios as a concept learning task, we will explain how to

use some assumptions on the agent decision process and

the environment to improve the results of our algorithm in

Section 3. We will detail a way to take into account the

agents’ preferences regarding their goals, and those provide

additional information about the agents’ goals in Section 4.

Finally we will conclude this paper with Section 5.

2. Problem Formalisation

What is our problem exactly? Our objective is to infer

the possible goals of an agent by observing him in a se-

ries of successful attempts to reach them. We thus assume

some training process in which we observe the agent in a

series of scenarios in which he performs actions in some

environment until he satisfies one of the goals we are try-

ing to guess. These observed scenarios will be modelled

as a set of observed traces describing the successive states

of the environment and actions of the agent. We consider

environments with discrete time and no exogenous events:

each action performed by the agent thus corresponds to a
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change of state. Here we model the state of the environment

as a series of discrete-valued attributes : N variables vari
with i ∈ {1, . . . , N} taking their values in variable domains

Dj = {vali1, . . . , valiNi
}. We build an atomic representation

by converting all the couples vari = valij into atoms var
valij
i ,

denoting by L the set of all these atoms. A state S is then

defined as a set of atoms var
valij
i from L where each vari

appears once and a trace is defined as a sequence of couples

(Si, ai) where Si ⊂ L is a state and ai an action (taken

from a finite set of actions A). We do not go into the detail

of the environment’s dynamics, but they can be abstracted

away by some function next from 2L × A to 22
L

which,

given a state S and an action a gives the set of possible

states that can be reached from S by performing a. When

the environment is deterministic, next(S, a) corresponds to

a single state. Since they come from observations, traces

are assumed to respect this dynamic, meaning that if i is

not the last index of the trace, Si+1 ∈ next(Si, ai).

To define successful traces we consider a special ac-

tion success without effects (∀S, next(S, success) = {S}),
which the agent performs whenever he reaches his goal. A

successful trace is thus a trace T = (S0, a0), . . . , (Sk, ak)

where ak =success and for i < k, ai �=success. This

means that a successful trace is a trace which ends in the

first state where the goal of the agent is satisfied. Given a

trace T = (S0, a0), . . . , (Sk, ak), we denote by endS(T ) the

last state Sk of a trace and by intS(T ) the set of interme-

diate states {S0, . . . , Sk−1}. The input of our problem is a

set of successful traces Σ = {T0, . . . , Tl} and our objective is

to infer from that some hypothesis about the agent’s goal,

which will be expressed as a propositional formula over L
which should be satisfied by some state (by interpreting

states as the conjunction of their atoms) if and only if the

goal is reached. We assume here that the goal depends only

on the state and not on the way to reach it. The agent just

needs to reach a state where the atoms composing the state

satisfy his goal, no matter how he reaches it. We want the

hypothesis written in the disjunctive normal form since an

agent can have several goals. More precisely we want hy-

potheses of the form H = C0 ∨ C1 ∨ ... ∨ Cm where each

Ci = x0 ∧ ... ∧ xn is a conjunction of atoms of L. Then,

given H = C0 ∨ C1 ∨ ... ∨ Cm , a state S = {y0, . . . , yn}
satisfies H if and only if

∧
yi∈S

yi |= H, that is, if and only

if there exists i ∈ {0, . . . ,m} such that Ci ⊆ S.

Even without knowing anything about the behavior of the

agents or the dynamics of the system, these observations

give a series of states in which we know whether the goal

is reached or not. Namely, we can build the set Spositive of

successful states by including in it all end-states of success-

ful traces from Σ, that is, Spositive = {endS(T )|T ∈ Σ}.
Likewise, we can build the set Snegative of unsuccessful

states by taking the union of all intermediate states, that is,

Snegative =
⋃

T∈Σ
intS(T ). Given the definition of a suc-

cessful trace, it means that the agent’s goal is satisfied only

by the elements of Spositive and under no circumstances by

an element of Snegative. The problem of inferring the goals

of the agent is then equivalent to a concept learning prob-

lem where the states that we put in the set Spositive are the

positive examples and the states that we put in Snegative

are the negative ones. A hypothesis H will be said to be

consistent with our data if it is satisfied by all the elements

of Spositive and by none of the elements of Snegative. We

want to obtain such a hypothesis as an output of our prob-

lem. We created an algorithm to treat this problem and

produce such a hypothesis, the algorithm can be found in

[Lorthioir et al., 2018].

3. Inferring the Agent’s Model and En-
vironment Rules from Data

In previous sections, our input Σ, a set of success-

ful traces, is reduced to two sets of states Spositive and

Snegative. By doing so, we do not use the information con-

tained in Σ about the order of the explored states and the

actions performed by the agents at each step. The advan-

tage of ignoring these aspects is that we can infer possible

goals without assuming more about the agent than what is

induced by the definition of successful traces, that is, the

agent stops (with a success action) as soon as his goal

is reached and this goal is dependent only on the current

state. However, if we know the dynamics of the environ-

ment, it seems sensible to derive some information based

on what the agent chose to do given what it could have

done. We explain in [Lorthioir et al., 2018] how to use such

knowledge to improve the results of our algorithm.

Figure 1: Comparison of the average syntactic distance

from the actual goals in function of the percentage of miss-

ing data with and without assumptions on the agent.

Figure 1 allows us to see the point to have this last as-

sumptions about the agent. On this figure the curves rep-

resent a distance similar to the Hamming one, between the

hypothesis about the agent’s goals generated by our algo-

rithm and the actual agent’s goals according to the percent-

age of data about the agent traces. More details about this

distance can be found in [Lorthioir et al., 2018]. For this

experiment we use the same amount of data for the two

curve at the beginning. Then we make two assumptions

on the agent which are that we know the action model of

the agent and that we know that if he can reach his goal
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with one move at the step t − 1 then at the step t he will

reach it. These are not very strong assumptions. These as-

sumptions allow us to generate more data from the existing

one. In total, we obtain almost three times more data with

the assumptions about the agent than without the assump-

tions. As we can see in figure 1 it allows us to generate a

hypothesis closer to the actual goals than when we use no

assumptions.

Actually, we have two interesting methods that we wish

to exploit for the deduction of the rules of action of

agents and the environment. The first one is to use

LFIT [Inoue et al., 2014] which is a framework for learning

normal logic programs from transitions of interpretations,

which means that, since we use a logical representation of

the world, we will be able to infer the possible action model

of the agent and the rules of the environment. Effectively,

to use LFIT we just need a trace of the evolution of the

states of the world in a chronological order. Which are in

fact the same data that we use to infer the agent’s goals.

Which means that we do not need an important modifi-

cation of the data collecting process to incorporate LFIT

to our method, which is a good point. After processing

these data with LFIT we will obtain a set of rules that

correspond to the possible transition from a state of the

world to another. We will then have for each state of the

world (observed previously in the collected data), the dif-

ferent actions that the agent did when he was in this state

and the states of the world that he reached after these ac-

tions. So we can infer a potential action model of the agent

and the dynamic of the environment based on the observed

transitions. But unfortunately LFIT is not really robust

against the lack of data and the noise, especially the data

need to cover as many transitions as possible between all

the different possible states of the world. Which is not

very convenient because usually the agent that we observe

is not acting randomly and so, many possible transitions

will never been observe. This is where our second method

comes in. SMILE [Bourgne et al., 2007], another method

that we can use to learn the action model of the agent.

This method uses the same kind of data than LFIT so here

also the modification of the data collecting process to use

SMILE and our method are not too cumbersome. Even if

SMILE is usually used for a multi-agent system because it

is, in fact, the different agents who will learn information

about the other agents of the system, we can just create

an agent ”Observer” who will learn the action model of

the observed agent. SMILE is more robust to the lack of

data than LFIT but not as effective in some cases. So we

will choose which method to use based on the quantity of

data obtained during the observation phase. We already

tried SMILE and LFIT with our data to extract the action

model of the agent and the rules of the environment. We

obtained promising results and so, we want to continue in

this way. But we do not have combined our method and

these two algorithms yet.

4. Incorporating Agents’ Preferences

To improve our method and provide some more interest-

ing hypothesis about the agents’ goals, we thought about

incorporate a preferences function about the goals of these

ones. Which means that our hypothesis will provide us with

a set of possible goals for an agent and ordered these goals

in function of the preferences of the agent. We want to start

first with a simple model of preference, by simple we mean

that if the agent prefers to reach the goal A rather than

the goal B his preferences will not take into account the

difficulty to reach these two goals. In other words, if for ex-

ample the goal A is preferred to the goal B but to reach the

goal A the agent needs twenty actions more than to reach

the goal B, in this case, we might think that in function

of the cost of the actions, the agent could finally prefer to

reach B. But since we do not take into account the cost of

the actions in our model we are not going to deal with this

case right now. However, it’s not really difficult to integrate

this to our model because we can represent the cost of the

agents’ actions by some atoms that we will add to our rep-

resentation of the world, but the computation time of our

algorithm is likely to increase drastically. The process of

inferring agents’ preferences will take place after the goals

inference in our method. Because, of course, we need to

know the agents’ goals to be able to order them. So once

we have the agent’s goals, we also need to know the agent’s

action model, then, for each intermediate state of the trace

of the agent (see Section 2.) we can see if there is other

reachable goals that the one reached in the final state of

the trace and if so, compare the number of time that a goal

has been preferred to another one. If between two goals one

has always been preferred and if it happened several times,

we can assume a strict preference between them A > B.

Otherwise the preference will be more moderate A 	 B.

Given an order of priority >p about the goals of an agent,

we can translate the fact A >p B in a logic formula by

assuming that if the agent finally reaches the goal B it

is because the goal A was not reachable. Then we can

translate this in the logic formula A ∨ ¬A ∧ B (where A

and B are atoms conjunctions) by using our language L
described in section 2. Likewise, if we have the prefer-

ence A >p B >p C on the agent’s goals we can write this

A ∨ ¬A ∧ B ∨ ¬A ∧ ¬B ∧ C. With such a translation we

could write all the possible strict orders of preference on

the agent’s goals, and since the writing is still in disjunc-

tive normal form (DNF) we can modify a bit our algorithm

and return a disjunction of such DNF as a result and thus

obtain the possible goals of the agent and his preferences

for these goals. If the results are promising, we will then try

to take into account the fact stated earlier, which is that

under some special conditions the agents can change their

preferences (especially considering the actions’ cost).

5. Conclusion

We saw that the Intention Recognition and Goal Recog-

nition have a wide variety of applications, especially in the

coming years with the development of artificial intelligence,
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robotics, and smart assistance. Unfortunately, several seri-

ous problems still slow down the use of plan recognition in

large-scale real-world situations. [Carberry, 2001] describes

these problems at the end of her paper. But we can also

add another problem more related to our work, which is

that in reality we do not really know when an agent reaches

his goal, but we will come back on this problem later. We

reminded our method and showed that it is quite different

than the previous works on intention or goal recognition.

Because few work are focused on using propositional logic

for goal recognition and our formalisation of the problem

allows us to use concept learning. This is very useful be-

cause the concept learning is well known and pretty easy

to use, several algorithms already exist to treat concept

learning. However, we made our own algorithm to control

some generalisation bias and we have shown is efficiency in

[Lorthioir et al., 2018]. We also showed that making some

assumptions about the agent and his environment can dras-

tically improve the goals deduction. This is why we plan to

use LFIT or SMILE to infer the agents’ models and the en-

vironment’s rules to exploit such assumptions. This and the

integration of the agents’ goals preferences in our model will

allow us to infer more refined hypotheses about the agent’s

goals. We were talking about the fact that in reality, we

could not know when an agent reaches his goal. This is

actually the main weakness of our method and we need

to overcome this weakness. For this, a dynamic learning

throughout the agent’s actions might be efficient and more

realistic. It could also be effective in a case where the agent

changes goal along the way or in a case where the agent

repeats the same cycle of actions, cases that we still can

not solve with our method.
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