

- 1 -

A New Character Decision-Making System
by combining Behavior Tree and State Machine

 Youichiro Miyake*1

 *1 SQUARE ENIX CO., LTD.

Abstract: We have developed a new decision-making system that combines behavior trees and state machines into a single
system. The system has both flexibility of behavior tree and strict control of state machines to give a scalability to
development of a character AI. The new decision-making system, we call the AI Graph, extends the node formalism to
enable sharing nodes between FSMs and Behavior Trees, provides advanced techniques for code reuse using trays which
organize code reuse and behavior blackboards, and also provides many features for integrating with detailed low-level
character behavior

1. Overview
Originally, behavior Tree and state machine are independent
technologies. They each have different good and bad points. The
intent behind Behavior Trees[Isla 01,02.5a,5b] is to make a series
of character behaviors whereas the intent behind Finite State
Machines is to make a stable cycle of character actions. A new
system, AI Graph, can have multilayers of both state machine
and behavior tree. Any node of any layer can have a state
machine or behavior tree as a lower layer (Figure 1).

Figure 1. A concept of AI Graph

2. AI Graph Structure and Operation Principle

2.1 Operation principle
An AI Graph is a node based graph system to make a

hierarchical structure with a GUI-based node graph tool during
game development (Figure 2). AI program execute data made by
the AI Graph tool. This is a data-driven system.

Level designers can make a multi-layered decision-making for
each character by using a visual node graph tool called the AI
Graph. For example, for the first step, a level designer makes a
top layer state machine with several states by setting and
connecting state machine nodes. Then the level designer can
make a new state machine as a sub-state of one or more of the
top-level states, or the designer can also make a new behavior
tree inside any of the top-level states. Furthermore, the level
designer can then make new state machines or behavior trees
inside each subsequent sub-state. In this way, the level designer

can make a hierarchical structure of state machines and behavior
trees by simply editing nodes on the tool.

Figure 2. AI Graph tool image

Each layer of the AI Graph also has a blackboard system by

which the designer can register variables used in the game. By
connecting the blackboards of separate nodes, the different layers
can share and use these variables.

2.2 Runtime execution process
An AI Graph user can generate data to be executed by the AI

program. AI program execution process is :

(1) A decision making process executes a top layer. Go to (2).
(2) A decision making process executes a start node in the next

layer.
a) When a node is primitive, after the node’s process finishes,

the next node is executed. Go to (2-a)
b) When a node is composite, the process executes a state

machine or behavior tree in the node. Go to (2).

So the process continues executing nodes until it cannot go to

a deeper layer. It then returns to a higher layer after finishing a
lower layer.

When a state machine’ transition happens in an upper layer,
the state currently executing lower layers must be finished. In
this case, after all processing of lower layers has finished, the
transition occurs.

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2O5-E-3-05

- 2 -

3. AI Graph Tool
By using the AI Graph tool, a user can make a state machine

or behavior tree for each layer (Figure 3). To make the next layer,
a user can select one node and make a state machine or behavior
tree in it. In this way AI Graph makes a hierarchical nested
structure. As requirements for a character increase in game
development, and a developer wants to make character’s decision
making graph more precisely, the hierarchical nested structure
allows developers to make as many layers as they want.

The AI Graph system has a real-time debug system that
connects to and communicates with the game’s run-time. Active
nodes are high-lighted on the decision graph tool as they are
executed. During development, this makes finding any problems
in the decision graph much easier. AI Graph maintains scalability,
variation, and diversity in character AI design through the course
of development because of its data-driven approach. In this
article, we will explain the AI Graph structure, operation
principle, and examples from FINAL FANTASY XV.

AI Graph tool is used to make a character’s decision making
based on behavior trees and state machines. It has three regions
(Figure 4). The center of the screen is a field to build a state
machine and behavior tree graph by connecting nodes. The left
vertically long window shows variables and nodes which are
already made and can be re-used. The right vertically long
window shows properties for customizing a node, and is called
the property window. A node can be connected with another
node by an arc. In a state machine, a node denotes a state and, an
arc indicates transition of the state. In a behavior tree, a node
denotes a behavior or operator of behavior tree and an arc is used
to express behavior tree structure. A tray is used to enclose a
state machine or a behavior tree. This enables a user to move one
entire state machine or behavior tree by moving the tray, and it is
also easy to see the layered architecture through the tray
hierarchy.

Figure 3. AI Graph Tool screen shot

3.1 Implementation Techniques of AI Graph Node.
In AI Graph, all nodes are re-used. For example, a node that

can be used in a state machine can also be used in a behavior tree.
But ordinarily the execution method of state machines and
behavior trees are different. To make it possible for an AI node
to be executed in both state machine and behavior tree, each AI
Graph node has four components (Figure 4):

1. Start process (when a node is called)
2. Update process (while a node is executed)

3. Finalizing process (when a node is terminated)
4. A condition at terminate

For both behavior tree and state machine, the start process, the

finalizing process and the update process are necessary to begin
to execute, finalize and execute a node. The difference between
them is what causes stopping a node. For a behavior tree, a node

Figure 4. AI Graph Tool screen shot

terminates itself by judging an internal terminate condition while
a state machine node is terminated by an external transition
condition. Thus if a node has these four components, it can be
executed in both behavior trees and state machines.

3.2 Data and Override
An AI Graph can be saved as an asset file. If an AI Graph is

very fundamental for a character, it is repeatedly called and used.
But the AI Graph is required to partially change the pattern,
because it should be adjusted to each character. For example,
when a state machine is saved as an asset file, a user will change
a state of the state machine to make a more precise behavior tree
or state machine in the state. A function to change a node is
called an “override”, much like C++.

Figure 5. Overriding a monster’s AI Graph

Furthermore, a monster’s AI Graph can be created by

overriding the graph repeatedly from common logic to monster
battle logic (Figure 8). In this way, overriding methods makes AI
Graph development easier and more effective.

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2O5-E-3-05

- 3 -

3.3 Blackboard in AI Graph
Variables can be shared via blackboard with two types of

blackboard (Figure 5). One is a local blackboard which belongs
to a tray[Nii 86a,86b]. Variables of a local blackboard can be
shared only in that local blackboard. The other is the global
blackboard. Variables of the global blackboard can be shared
with game and all characters’ individual AIs. In the AI Graph
tool, both blackboards are shown on the left side. And some
variables are listed in them. To use variables of one local
blackboard in a lower tray, the upper blackboard must be
connected to the local blackboard of the lower layer included in
the tray. Two connected blackboards can share variables.

 These variables are used to describe the properties of a node
and the transition conditions of a state machine, and so on. For
example, the global variable “IS_IN_CAMERA” means whether
an actor is in camera or not, and this variable can be used to
describe a transition condition inside a state machine contained
in a tray.

3.4 Parallel Thinking by AI Graph
For some situations, a character must think about two things at

a time. AI Graph allows a character to have two concurrent
thinking processes, and it is better to make two simple graphs
rather than one big complex graph (Figure 6).

Figure 6. Parallel thinking

For example, one thinking process is a simple state machine to

set a character behavior, and the other is a simple state to cause
the character to look at a target that suddenly appears. The one
state machine begins from a “START” node, and the other state
machine begins from “PSTART” node.

The two state machines are executed concurrently. So the
character can look around and search for a new target while it
keeps attacking. Further, a behavior tree can execute two
processes by a parallel node. For example, one behavior is to
decide a target and the other is to approach and attack.

3.5 Interrupting the thinking process
It often happens that a character stops its thinking and must
execute another specific action. An interrupt node interrupts a

process of AI Graph when an interrupting condition is satisfied,
and it executes the node linked to the interrupt node. For example,
when a new game mission starts, monsters must rush to a player.
After rushing into a player’s position, they begin their original
thinking process. In this case, two AI Graphs are prepared. One
AI Graph includes an interrupt node (Figure 7). It causes the
current tray to stop and the other Tray process to start when the
transition condition connected to the interrupt node is satisfied.
And after the tray process finishes, the process returns to the
original process.

4. Use case of AI Graph in FINAL FANTASY
XV

FINAL FANTASY XV is an RPG game in which a player
travels in a large open world with three buddies while they fight
with monsters and enemies in real-time (Figure 7). All characters
have intelligence to make their decisions by themselves. Also for
the player character, AI supports the player character’s behaviors.

Figure 7. A player (left), a, monster, and a buddy character(right)

4.1 Body and Intelligence
AI Graph describes a character’s intelligence and decision-

making, but it does not describe physical body motion. It only
gives an order of body motion via each node. And an AI Graph
uses information required only for decision-making.

 A character system consists of three layers: an AI layer, a
body layer, and an animation layer. These three modules send
messages to each other and share variables via blackboards.

AI Graph does not directly initiate animation data. AI Graph
send a message to the animation layer via a body layer which
consists of a state machine. Especially for shooting and damage
behavior, AI Graph calls the special control nodes prepared in a
body layer.

This three-layered architecture separates the roles to control a
character between intelligence and physical body. And it also
avoids increasing the size of an AI Graph (Figure 8).

A body layer represents a character’s body as a node of a state
machine. For example, a character’s body state is expressed as
running, jumping or climbing a ladder.

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2O5-E-3-05

- 4 -

Figure 8. 3 layered system of character

4.2 AI development in game

For AI development, fast iteration is one of the most important
features to keep AI improving until the end of development. As
such a user should be able to reload an AI Graph without
compiling when they want to make a change. In AI Graph Editor,
an AI Graph can be compiled in the Editor independently from
other systems’ code. This an example of a data-driven system.

There are two debug windows (Figure 9). While a game
program runs, an AI Graph keeps a connection with the program.
This is called the visual node debugger. In this debugger, the
active node currently being executed is highlighted in green. This
enables a user to trace the active node in real-time.

The other debug window is in a game window. The window
displays detailed logs which are generated from a character’s AI
Graph and AI Graph variables.

Figure 9 Visual node debugger (left) and In-game debug window
(right)

5. Conclusion

As a game environment and game rules becomes more
complex, a character is required to behave more smoothly and
intelligently. When our project of next-gen AI development
began, we realized and felt that improvement of our AI logic tool
was required. After many discussions, an idea to combine both
state machine and behavior tree was accepted and agreed to by
the team. It allows a user to use both techniques in a nested
hierarchical node structure to make a stable and flexible AI logic.
We called this tool the AI Graph Editor. In this article, the basic

principles and applied examples of AI Graph, and how these
technologies are used in FINAL FANTASY XV which was
released in 2016, are explained.

For all figures
©2016 SQUARE ENIX CO., LTD. All Rights Reserved.

MAIN CHARACTER DESIGN:TETSUYA NOMURA
All other trademarks are the property of their respective owners.

References
[Isla 01] D. Isla, R. Burke, M. Downie, B. Blumberg. A Layered Brain

Architecture for Synthetic Creatures. In Proceedings of IJCAI
2001

[Isla 02] Damian Isla, Bruce Blumberg Blackboard Architectures, AI
Game Programming Wisdom, Vol.1, 7.1, pp.333-344 2002

[Isla 05a] Damian Isla Managing Complexity in the Halo2 AI,Game
Developer's Conference Proceedings. 2005

http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_
handling_.php

[Isla 05b] Damian Isla. Dude, where s my Warthog? From Pathfinding
to General Spatial Competence , AIIDE 2005

http://naimadgames.com/publications.html
 [Nii 86a] H. Penny Nii The Blackboard Model of Problem Solving and

the Evolution of Blackboard Architectures, AI Magazine, Vol.7
Num.2, pp38-53 1986

http://www.aaai.org/ojs/index.php/aimagazine/article/view/537
[Nii 86b] H. Penny Nii Blackboard Application Systems, Blackboard

Systems and a Knowledge Engineering Perspective, AI Magazine,
Vol.7 Num.3, pp82-107 1986

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2O5-E-3-05

