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We consider a prediction-based decision-making problem, in which a binary decision corresponds to whether
or not a numerical variable is predicted to exceed a given threshold. The final goal is to predict a binary label,
however, we can exploit the numerical variable in the training phase as side-information. In addition, we focus
on class-imbalanced situation. We investigate on an idea of using near-miss samples, which is specified by the
numerical variable, to deal with the class-imbalance. We present the benefit of exploiting the side-information
theoretically as well as experimentally.
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f : X → Y
X Y = {0, 1}

yn ∈ Y zn ∈ R

θ

yn =

{
1 (zn ≥ θ)

0 (zn < θ).

θ = 0 (zn − θ zn
) zn

zn
[1]

(WA: weighted accuracy)

WA({(zn, f(xn))}) =
1

N

∑
n

C+Izn≥0If(xn)≥0.5 + C−Izn<0If(xn)<0.5, (1)

N C+, C−

C+ = N/2N+, C− = N/2N−
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BA({(zn, f(xn))}) =
1

N

∑
n

N

2N+
Izn≥0If(xn)≥0.5 +

N

2N−
Izn<0If(xn)<0.5, (2)

N+ =
∑

n Iz≥0, N− =
∑

n Iz<0

(BA: balanced accuracy)

1−BA (BER: balanced error rate)

[2]

3

3.1

( ){sn = p(y = 1|xn)}
[3, 4, 5]

s [5]

[4]

z p(y = 1|x)

z

ŷ := I(ẑ ≥ θ′)

3.2

(PI: privileged information)

(LUPI: learning using privileged information)

SVM

[1, 6] (GD: generalized distillation)[7]

GD “

” PI {yn, x∗
n}n “

”f

LGD
S,T (f) =

1

N

∑
n

σ(gt(x
∗)/T ) log f(xn)

+ σ(−gt(x
∗)/T ) log(1− f(xn)), (3)

gt T

σ(a) := 1/(1 + exp(−a))

4 z PI

GD GD

LUPI

3.3
PI

[8]

C+, C−

LS(f) =
1

N

∑
n

C+y log f(xn)

+ C−(1− y) log(1− f(xn)). (4)

1 −WA

WA

N+ C+

4 GD
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4

GD (3) (4)

GD

LS,T (f) =
1

N

∑
n

CT,+σ(zn/T ) log f(xn)

+ CT,−σ(−zn/T ) log(1− f(xn)), (5)

CT,+, CT,−

CT,+ = C+
p+
pT,+

, CT,− = C−
p−
pT,−

, (6)

p+, p− pT,+, pT,−
GD

p+ := E[y], pT,+ := E[σ(zn/T )]

σ(zn/T )

T 0 y

σ(z/T ) → I(z ≥ 0) = y as T → 0

T → 0

4.1 ( ). w∗
T

ŵ : ‖ŵ‖2 ≤ B (5)
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∗
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N

√
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−
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C+ =
1

2p+
and C− =

1

2p−
, (7)

4.1.1 ( ).

E
S
[LT (ŵ)− LT (w

∗
T )] ≤ BX√

N

√
1

pT,+
+

1

pT,−
. (8)

limT→0 pT,+ = p+
z z

pT,+

5
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GPU

[9, 10]

GPU

4

{τ1, . . . , τ4} z := 4∑
i τi

100p+%

θ

14 60,400

z 2

θ

T pT,+ p+

L2

T
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3:

p+ :=
∑

I(z ≥ 0)/N

pT,+ (8)
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