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Recent machine learning models such as deep learning become complicated and difficult to understand the
meaning of learned weights. And also, there is a possibility of obtaining output ignoring the prior knowledge
because machine learning model is learned from the observed data including the noise outlier. Especially in the
natural science field exploring the principle, non interpretable model cannot be a useful model unless the model has
descriptiveness even if model could perform well with high accuracy. On the other hand, numerical simulation using
physical model is difficult to predict long-term due to the model discrepancy. In order to solve such disadvantages,
we focused on the method that integrate machine learning model and physical model. This paper proposes the
algorithm that can predict two components, namely outputs based on the law of physics and their model discrepancy.
As an example, we used on predicting winds in the upper troposphere from thermal wind equations.
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2 yi
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4.3
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ERA-Interim

( (7),(8)) ERA-Interim

(ACNN)

Root Mean Squared Error

7.

7.1
RMSE 1

ERA-Interim CNN

1: Average RMSE

Method RMSE SD

Proposed 0.652 0.039

ACNN 0.679 0.038

TWE 1.682 0.182
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