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Abstract: In this research, we try to design a method to search the optimum model according to
individual data.In the existing structure search algorithm, the applicable types of data are limited.In this
study, we will input the receptive field of the convolutional layer , It is possible to apply various types of data
to the convolutional neural network.In concrete terms, by interpreting the receptive field as an index that
associates inputs and weights in the convolutional layer We designed a new layer expressing the receptive field
in a matrix and also made it possible to learn receptive field by gradient by relaxing its matrix to continuous
value.The result of the experiment The proposed method for the data whose data structure is unknown By
using the method proposed in this paper, it is expected that the spread of IoT and the sensor Relative big
data that is expected to increase in the improvement of technology, the neural network is expected to be
effectively applied.
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