
Conditional variational auto-encoder

Generating airfoil shape using conditional variational auto-encoder
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We train an inference model for airfoil shape in application of mechanical design. It is important to obtain
a reasonable shape that shows a specific performance that designers need. We use conditional variational auto-
encoder to train inference model. We use NACA airfoil to evaluate the proposed method, and show the method
outputs reasonable shapes. However, when we use naive discretization method of shapes, generated shape involves
small perturbation which leads self-intersection. Since such perturbation is not desired in view of mechanical desing,
we use Gaussian process to smooth the shape.
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