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Medical image recognition of MRI brain images using deep logistic GMDH-type  
neural network and convolutional neural network 
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In this study, hybrid deep neural network is organized using the deep logistic Group Method of Data Handling (GMDH)-
type neural network and the Convolutional Neural Network (CNN) and, is applied to the medical image recognition problem. 
The deep GMDH-type neural network algorithms have abilities of self-selecting the number of hidden layers, the optimum 
neuron architectures and useful input variables, and they can automatically organize the deep neural network architectures to 
minimize prediction error criterion defined as Akaike’s Information Criterion (AIC) or Prediction Sum of Squares (PSS) . 
This deep neural network algorithm is applied to medical image recognitions of brain regions, and the organs such as brain, 
the white matter and the lateral ventricle, are recognized and these regions are extracted accurately using the deep logistic 
GMDH-type neural networks. 
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Fig.2 Original image 
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Fig.3 Variation of PSS in the deep GMDH-type of NN(1) 
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Fig.4 Output image of              Fig.5 Output image after 
the neural network(1)               the post-processing(1) 
 

 
 
 
 

Fig.6 Overlapped image(1)        Fig.7 Gray scale image (1) 
 

(a) m=5                 (b) m=7                         (c) m=9 
Fig.8 Output images of the conventional neural network (1)[2,3] 
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Fig.9 Variation of PSS in the deep GMDH-type NN(2) 

 

 

 

 

 

 
Fig.10 Output image of        Fig. 11 Output image after  
the neural network(2)           the post processing (2) 
 

 

 

 

 
Fig. 12 Overlapped image(2)       Fig.13 Gray scale image (2) 
  
 
 
 
 
 

(a) m=5                         (b) m=7                  (c) m=9 
Fig.14 Output images of the conventional neural network (2)[2,3] 
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Fig.15 Variation of PSS in the deep GMDH-type NN(3) 
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Fig.16 Output image of        Fig. 17 Output image after  
the neural network (3)          the post processing (3)  
 

 

 

 
Fig. 18 Overlapped image(3)       Fig.19 Gray scale image (3) 
 
 
 
 
 
 

(a) m=5                   (b) m=7                          (c) m=9 
Fig.20 Output images of conventional neural network (3)[2,3] 

Table 1 Number of hidden layers 
Regions Number of hidden layers 

Brain 19

White matter                      20 

Lateral ventricle                        8 
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Table2  Selection of useful input variables in the deep logistic GMDH-type neural networks 
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