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Time series prediction is important for the industry and various prediction models have been proposed. Recently
some reports showed that deep learning models have higher accuracy than traditional models. However, it is
known that these models take longer time to learn and are difficult to maintain long-term periodicity. To deal with
these problems, some researches on deep models with the concepts of autoregressive models have been proposed.
However, since these models have not been compared with the same data and same settings, it is unclear which
models are effective for diffrent tasks and different data. In this research, we apply these models to different types
of time series data under different settings and examine the learning processes and results to capture the features
of each model. The results confirmed the claimed merit of the model and suggested that simpler deep models are
effective under complicated problems.
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1: (MSE)

(0) (60) (0) (60)

Linear 10.69 10.62 8.66 10.64

MLP 11.03 10.83 8.24 17.39

LSTM 10.35 11.21 121.32 126.12

CNN 11.69 10.89 12.75 6.21

LSTNet 10.57 10.44 8.43 10.59

R2N2 10.62 10.39 8.47 10.58

SOCNN 10.00 10.52 4.54 6.44
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