推移性を利用したRAIアルゴリズムによる大規模ベイジアンネットワーク構造学習

Learning huge Bayesian network structures by RAI algorithm with transitivity

本田和雅 名取和樹 菅原聖太 磯崎隆司 植野真臣
Kazunori Honda
Shouta Sugahara
Takashi Isozaki
Maomi Ueno
電気通信大学大学院情報理工学研究科
Graduate school of Information and Engineering，The University of Electro－Communications

Abstract

Learning Bayesian networks（BNs）is NP－hard．Recently，we can learn 1000 nodes BNs with consistency by the RAI algorithm using Bayes factor，which is the state－of－the－art learning method．However，it is important to enable learning huger BNs to apply it in practice．This paper proves that conditional independence（CI）of BNs has the transitivity that can infer，from CI between a pair of variables，CI between each of them and another variable，and proposes a constraint－based algorithm，using the RAI algorithm with the transitivity．The experimental results show that the proposed method decreases the number of CI tests and run－time，and can learn huge BNs which prototypical constraint－based algorithms cannot learn．

1．はじめに

ベイジアンネットワークは，確率変数をノードとし，ノード間の依存関係を非循環有向グラフ（Directed Acyclic Graph： DAG）と各ノードの条件付き確率で表現する確率的グラフィ カルモデルである．ベイジアンネットワークのネットワーク構造は一般に未知であるため，データから推定する必要がある。 この問題をベイジアンネットワーク構造学習と呼ぶ。

ベイジアンネットワーク構造学習手法として，漸近一致性 を有する学習スコアが最大となる構造を全ての構造の候補か ら探索する厳密解探索アプローチが知られている。この手法 は構造の探索数がノード数に対し指数的に増加する NP 困難問題［Chickering 96］である．厳密解を効率的に探索するため に，動的計画法［Silander 06］，A^{*} 探索［Yuan 11］，整数計画法［Cussens 11］などの最適化手法による構造学習法が提案さ れてきたが，未だ 60 変数程度の構造学習が限界である。

一方，因果モデルの分野では，より計算効率の高い手法であ る制約ベースアプローチが提案されている。制約ベースアプ ローチは完全無向グラフの各エッジに対する条件付き独立性検定（Conditional Independence test：CI テスト）で独立と判定 されたエッジを削除し，それによって得られた無向グラフをオ リエンテーションルール［Pearl 00］で方向付けることで構造を推定する。この手法の代表的なアルゴリズムとして，PCアルゴ リズム［Spirtes 00］，MMHC アルゴリズム［Tsamardinos 06］， RAI アルゴリズム［Yehezkel 09］が知られており，RAIアル ゴリズムが最も高速に学習できると報告されている。近年では RAI アルゴリズムの CI テストに Bayes factor を用いること により，漸近一致性を有しつつ 1000 変数程度の学習が可能と なった［Natori 17］［名取 18］が，本研究ではより大規模の構造学習を実現できる手法の開発を目的とする。

制約ベースアプローチの時間計算量は学習に要する CI テス ト数に依存し，一般に，学習のできる限り早期にエッジを削除 するほど CI テスト数を少なくして学習できる。そこで本研究 では，まず，ある二変数の条件付き独立性からその各変数と他変数との条件付き独立性の少なくとも一つを保証できる推移

[^0]性が成り立つことを示す。そして，ある条件付き独立性を検出 したとき，推移性により少なくとも一つが条件付き独立となる二組のエッジを優先して CI テストできるエッジ削除法を提案 し，Bayes factorを用いた RAIアルゴリズムに組み込む。こ れにより，より学習の早期にエッジを削除することで CI テス ト数を削減でき，従来手法では実現できない大規模構造学習の実現を期待できる。

本研究は数千ノードのネットワークを用いたシミュレーショ ン実験により従来ではできない大規模構造学習を実現する。

2．ベイジアンネットワーク構造学習

今， $\mathbf{V}=\left\{X_{1}, \ldots, X_{n}\right\}$ を n 個の離散確率変数集合とし，各変数 X_{i} は r_{i} 個の状態集合 $\left\{1, \ldots, r_{i}\right\}$ から一つの値 k を取る （ $X_{i}=k$ と書く）とする。また，ベイジアンネットワーク構造 G において，各変数 X_{i} の親変数集合を Π_{i}^{G} とする。このとき， ベイジアンネットワークは非循環有向グラフ（Directed Acyclic Graph：DAG）を仮定することで同時確率分布 $P\left(X_{1}, \ldots, X_{n}\right)$ を以下の条件付き確率の積に厳密分解できる。

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{\Pi}_{i}^{G}\right) . \tag{1}
\end{equation*}
$$

ベイジアンネットワーク構造学習では漸近一致性を有する周辺尤度スコアを最大にする構造を探索する厳密解探索アプローチ が一般的に用いられる．今，観測データを $\mathbf{D}=\left\{D_{1}, \ldots, D_{N}\right\}$ とすると，ネットワーク G における周辺尤度スコア $P(\mathbf{D} \mid G)$ は以下となる。

$$
\begin{equation*}
P(\mathbf{D} \mid G)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)} \prod_{k=1}^{r_{i}} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)} . \tag{2}
\end{equation*}
$$

ここで，$N_{i j k}$ は変数 X_{i} の親変数集合 $\boldsymbol{\Pi}_{i}^{G}$ が $j\left(j=1, \ldots, q_{i}\right)$番目のパターンを取るときの $X_{i}=k$ となる頻度を表し，$N_{i j}=$ $\sum_{k=1}^{r_{i}} N_{i j k}$ である。また，$\alpha_{i j k}$ はハイパーパラメータを表し， $\alpha_{i j}=\sum_{k=1}^{r_{i}} \alpha_{i j k}$ である。近年では，$\alpha_{i j k}=\alpha /\left(r_{i} q_{i}\right)$ とし た Bayesian Dirichlet equivalent uniform（BDeu）が最も用 いられる［Heckerman 95］．ここで，α は Equivalent Sample

図 1：従属モデル G_{1}

図 2 ：独立モデル G_{2}

Size（ESS）と呼ばれる事前知識の重みを示す擬似サンプルで ある．

周辺尤度スコアを最大化する厳密解探索アプローチとし て，動的計画法［Silander 06］，A^{*} 探索［Yuan 11］，整数計画法［Cussens 11］などが提案されてきたが，未だ 60 変数程度の構造学習が限界であり，大規模構造を学習できない。

因果モデル分野では，大幅に計算量を削減できる制約ベー スアプローチと呼ばれる構造学習法が提案されてきた。このア プローチの基本的なアルゴリズムは以下の通りである。

1．確率変数をノードとした完全無向グラフを生成する。
2． 1 の完全無向グラフに対し条件付き独立性検定（Condi－ tional Independence test：CI テスト）を行い，独立と判定されたエッジを削除する。

3． 2 で得られた無向グラフに対してオリエンテーションルー ル［Pearl 00］を用いて方向付けを行う。

制約ベースアプローチによる学習アルゴリズムとして， PC アルゴリズム［Spirtes 00］や MMHC アルゴリズム ［Tsamardinos 06］，RAI アルゴリズム［Yehezkel 09］が提案 されており，RAI アルゴリズムは最も高速に学習できると報告されている。しかし，これらのアルゴリズムは CI テストに χ^{2} 検定や G^{2} 検定，条件付き相互情報量を用いるために漸近一致性を持たない。
Steck らはBayes factor を用いた CI テストを提案している ［Steck 02］．今，二ノード X, Y とそれらの共通親ノード集合 Z からなる従属モデルを G_{1} ，独立モデルを G_{2} とし，それぞ れ図1，2に示す。このときの Bayes factorを $\mathrm{BF}(X, Y \mid \mathbf{Z})$ とすると，対数 Bayes factor は以下となる。

$$
\begin{equation*}
\log \mathrm{BF}(X, Y \mid \mathbf{Z})=\log \frac{P\left(\mathbf{D} \mid G_{1}, \boldsymbol{\alpha}\right)}{P\left(\mathbf{D} \mid G_{2}, \boldsymbol{\alpha}\right)} \tag{3}
\end{equation*}
$$

ここで，$P\left(\mathbf{D} \mid G_{1}, \boldsymbol{\alpha}\right), P\left(\mathbf{D} \mid G_{2}, \boldsymbol{\alpha}\right)$ は式（2）の BDeu を用いる。Bayes factor を用いた CI テストでは対数 Bayes factor が 0 以上か否かで図 1 ， 2 のどちらを選択するか判定す る．この CI テストは漸近的に真の条件付き独立性を判定でき る［名取 18］．

3．Bayes factorを用いた RAIアルゴリズム

RAI アルゴリズムは，制約ベースアプローチの中で最も高速に学習できるアルゴリズムである［Yehezkel 09］．RAI アル ゴリズムは学習途中にエッジを方向付け，全体のグラフを部分 グラフへ分割するため，各ノードの親候補となるノード集合を制約し，高次の CI テストを削減して学習できる．近年では， RAI アルゴリズムの CI テストに Bayes factor を用いること で漸近一致性を有しつつ最も大規模の構造学習を実現している ［Natori 17］［名取 18］．

Bayes factorを用いた RAI アルゴリズムの詳細を Algo－ rithm1 に示す。関数 RAI はグラフとデータ，CI テストの次

```
Algorithm 1 The RAI algorithm using Bayes factor
    function \(\operatorname{Main}\left(G_{u c}, \mathbf{D}\right)\)
        \(G_{u c}=\left(\mathbf{V}_{u c}, \mathbf{E}_{u c}\right):\) 完全無向グラフ
        D: データ
        return RAI \(\left(0, G_{u c}, \phi, G_{u c}, \mathbf{D}\right)\)
    end function
    : function \(\operatorname{RAI}\left(n_{z}, G_{s}, \mathbf{G}_{e x}, G_{\text {all }}, \mathbf{D}\right)\)
    \(n_{z}: \mathrm{CI}\) テストの次数
\(G_{s}=\left(\mathbf{V}_{s}, \mathbf{E}_{s}\right):\) 入力グラフ
    \(\mathbf{G}_{e x}\) : 分割されたグラフの集合
    \(G_{\text {all }}=\left(\mathbf{V}_{\text {all }}, \mathbf{E}_{\text {all }}\right):\) CI テストと方向付けによって得られる出力グラフ
        if 全ての \(V \in \mathbf{V}_{s}\) について \(\left|\mathbf{P a}_{p}\left(V, G_{a l l}\right)\right|<n_{z}+1\) then
            return \(G_{\text {all }}\)
        end if
    / CI テストによるエッジの削除
        for \(G_{e x}=\left(\mathbf{V}_{e x}, \mathbf{E}_{e x}\right) \in \mathbf{G}_{e x}\) do
            for \(X \in \mathbf{V}_{s}, Y \in \mathbf{V}_{e x}\) do
                for \(\mathbf{Z} \subseteq \mathbf{P a}_{p}\left(X, G_{s}\right) \cup \Pi_{X}^{\mathbf{G}_{e x}} \backslash\{Y\}\) do
                        if \(|\mathbf{Z}|=n_{z}\) かつ \(\log \operatorname{BF}(X, Y \mid \mathbf{Z})<0\) then
                        \(\mathbf{E}_{\text {all }} \leftarrow \mathbf{E}_{\text {all }} \backslash\left\{E_{X Y}\right\} \quad \triangleright E_{X Y}: X Y\) 間のエッジ
                    end if
                end for
            end for
        end for
        for \(X \in \mathbf{V}_{s}, Y \in \mathbf{V}_{s}\) do
                for \(\mathbf{Z} \subseteq \mathbf{P a}_{p}\left(X, G_{s}\right) \cup \boldsymbol{\Pi}_{X}^{\mathbf{G}_{e x}} \backslash\{Y\}\) do
                    if \(|\mathbf{Z}|=n_{z}\) かつ \(\log \mathrm{BF}(X, Y \mid \mathbf{Z})<0\) then
                    \(\mathbf{E}_{\text {all }} \leftarrow \mathbf{E}_{\text {all }} \backslash\left\{E_{X Y}\right\}, \mathbf{E}_{s} \leftarrow \mathbf{E}_{s} \backslash\left\{E_{X Y}\right\}\)
            end if
                end for
        end for
        オリエンテーションルールを用いて \(\mathbf{E}_{a l l}, \mathbf{E}_{s}\) を方向付け
    \(/ / G_{s}\) を部分グラフに分割
        \(\mathbf{V}_{c} \leftarrow\left\{V \mid V \in \mathbf{V}_{s}, V\right.\) は子ノードを持たず, 無向エッジで親に到達不可能 \(\}\)
        \(\mathbf{E}_{c} \leftarrow\left\{E_{X Y} \mid X, Y \in \mathbf{V}_{c}, E_{X Y}\right.\) は無向エッジ \(\}\)
        \(G_{e} \leftarrow G_{s} \backslash\left(\mathbf{V}_{c}, \mathbf{E}_{c}\right)\)
        \(\mathrm{G}_{e} \leftarrow G_{e}\) の個々の連結グラフからなる集合
    // 再帰的に関数 RAI を呼び出す
        for \(i=1\) to \(\left|\mathbf{G}_{e}\right|\) do
            \(G_{a l l} \leftarrow \operatorname{RAI}\left(n_{z}+1, \mathbf{G}_{e}[i], \mathbf{G}_{e x}, G_{a l l}, \mathbf{D}\right)\)
        end for
        \(\mathbf{G}_{e x} \leftarrow \mathbf{G}_{e x} \cup \mathbf{G}_{e}\)
        return \(\operatorname{RAI}\left(n_{z}+1,\left(\mathbf{V}_{c}, \mathbf{E}_{c}\right), \mathbf{G}_{e x}, G_{a l l}, \mathbf{D}\right)\)
    end function
```

数 n_{Z} を入力されたとき，まず，各ノード V の子ノードを除 いた隣接ノード集合 $\mathbf{P a}_{p}\left(V, G_{s}\right)$ の大きさが $n_{Z}+1$ 未満か判定し，そうであれば学習を終了する（5 から 7 行目）。学習を続ける場合，各エッジに対して Bayes factor を用いた CI テス トを行いエッジを削除し（8 から 23 行目），残ったエッジを オリエンテーションルールで方向付ける（24行目）。方向付 けられたグラフから子ノードを持たないノード集合からなる部分グラフを取り出し，それ以外のグラフを個々の連結な部分グ ラフに分割する（ 25 から 28 行目）。以上を各部分グラフに対 して再帰的に実行する（ 29 から 33 行目）。これにより各ノー ドの親ノード候補を制約することができ，高速に学習できる。

4．提案手法

制約ベースアプローチの時間計算量は学習に要する CI テス ト数に依存する。一般的に，制約ベースアプローチは学習ので きる限り早期にエッジを削除するほど CI テスト数を抑えて学習できる。本研究は，まず，ベイジアンネットワークのある二変数の条件付き独立性からその各変数と他変数との条件付き独立性の少なくとも一つを保証できる推移性が成り立つことを示 す．そして，推移性を利用することで，ある条件付き独立性を検出したときに少なくとも一つが条件付き独立となる二組の エッジを優先して CI テストする手法を提案し，Bayes factor を用いたRAIアルゴリズムに組み込む。これにより，より学習の早期にエッジを削除できるため，学習に要する CI テスト数を削減し，従来より大規模の構造学習の実現を期待できる．

4.1 推移性

今，ノード X からノード Y への隣接ノードの連なりを道と言い，道上で三ノードが $A \rightarrow C \leftarrow B$ と結合するとき，C を合流結合するノードと言う。また，$X \perp Y \mid \mathbf{Z}$ は X と Y ノード集合 Z を所与とした条件付き独立性を表すとする。こ のとき，以下の定理で示す推移性が成り立つ。

定理1 1 ＝(\mathbf{V}, \mathbf{E}) を $D A G$ とし，$X, Y \in \mathbf{V}$ で，Y は X の非子孫とする。このとき，$A \in \mathbf{V} \backslash\left(\{X, Y\} \cup \boldsymbol{\Pi}_{X}^{G} \cup \mathbf{W}\right)$ と すると，以下が成り立つ。

$$
\begin{equation*}
X \perp Y\left|\boldsymbol{\Pi}_{X}^{G} \Rightarrow X \perp A\right| \boldsymbol{\Pi}_{X}^{G} \text { or } A \perp Y \mid \boldsymbol{\Pi}_{X}^{G} \tag{4}
\end{equation*}
$$

ここで， \mathbf{W} は X の子孫であり，X と Y が合流結合するノー ドとその子孫からなるノード集合を表し，Π_{X}^{G} は X の G にお ける親ノード集合を表す。

証明は省略する．定理1より，ある二変数の条件付き独立性か らその各変数と他変数との条件付き独立性を少なくとも一つ保証できる。これを制約ベースアプローチに利用することで， あるエッジを削除したとき，その両端と他ノードとのエッジの少なくとも一つの削除が保証される。これにより，より学習の早期にエッジを削除でき，CI テスト数の削減を期待できる。

4.2 提案アルゴリズム

本節では，定理1の推移性を用いたエッジ削除法を提案し， それを Bayes factor を用いた RAI アルゴリズムへ組み込む。

定理1の推移性を利用するためには推移性を有する候補ノー ド A の探索空間を同定する必要がある。今，V をノード集合 とし，$X, Y \in \mathbf{V}, \Pi_{X}^{G}$ を X のグラフ G における親ノード集合とする。また，W を X の子孫で，X と Y が合流結合する ノードとその子孫からなるノード集合とする。このとき，候補 ノード A の探索空間は $\mathbf{V} \backslash\left(\{X, Y\} \cup \boldsymbol{\Pi}_{X}^{G} \cup \mathbf{W}\right)$ であるため， まずノード集合 W の要素を列挙しなければならない。W の要素を列挙するためには合流結合を同定する必要があるが，こ れは X, Y 間で X の子孫を持つ全ての道を探索しなければな らず，計算量が大きい。しかし，推移性を有するノード A の探索空間は式（4）でさらに制約でき，これにより探索空間を同定する計算量を軽減できる。今，X, Y のエッジを削除し たとき，X と A か A と Y（もしくは両方）のエッジがすで に削除されていたとする。このとき，X と A か A と Y（も しくは両方）の条件付き独立性がすでに検出されているため，式（4）はすでに成り立っており，推移性を利用する必要がな い。 すなわち，A の探索空間は X と Y の共通隣接ノード集合 $\operatorname{Adj}(X, G) \cap \mathbf{A d j}(Y, G)$ に含まれなければならない。ここで， X と Y の共通子ノード集合 $\mathbf{C h}(X, G) \cap \mathbf{C h}(Y, G)$ はノード集合 W に含まれるために A の探索空間から除外する。また，定理1より，Π_{X}^{G} も除外する。したがって，A の探索空間は $\mathbf{A d j}(X, G) \cap \mathbf{A d j}(Y, G) \backslash\left(\mathbf{C h}(X, G) \cap \mathbf{C h}(Y, G) \cup \boldsymbol{\Pi}_{X}^{G}\right)$ となる。 この探索空間は条件付き独立となる二ノード X, Y の共通隣接ノードを探索すれば同定できるため，ノード数に対して線形時間で計算できる。

定理1 の推移性を利用した CI テストとエッジ削除法をAl－ gorithm2 に示す。関数 TRANSITIVE＿CUT は学習途中の グラフ $G, \log \operatorname{BF}(X, Y \mid \mathbf{Z})<0$ となる二ノード X, Y とノード集合 \mathbf{Z} ，データ D を入力とし，推移性に基づくエ ッジの削除を行ったあとにグラフを出力する。具体的には， $\mathbf{A d j}(X, G) \cap \mathbf{A d j}(Y, G) \backslash(\mathbf{C h}(X, G) \cap \mathbf{C h}(Y, G) \cup \mathbf{Z})$ を前述の探索空間とし，この探索空間に属するノードを A とする。二つのノード対 X と $A, ~ A$ と Y のそれぞれに対して Z を所

```
Algorithm 2 Edge cutting with transitivity
    function transitive_cut ( \(G, X, Y, \mathbf{Z}, \mathbf{D}\) )
    \(G=(\mathbf{V}, \mathbf{E}):\) 全体グラフ
    \(X, Y, \mathbf{Z}: \log \operatorname{BF}(X, Y \mid \mathbf{Z})<0\) となるニノード \(X, Y\) とノード集合 \(\mathbf{Z}\)
    D: データ
        \(\mathbf{A} \leftarrow \mathbf{A d j}(X, G) \cap \operatorname{Adj}(Y, G) \backslash(\mathbf{C h}(X, G) \cap \mathbf{C h}(Y, G) \cup \mathbf{Z})\)
        for \(A \in A\) do
                \(\log \operatorname{BF}(X, A \mid \mathbf{Z})<0\) then
\(\mathbf{E} \leftarrow \mathbf{E} \backslash\left\{E_{X A}\right\}\)
            end if
            if \(\log \operatorname{BF}(A, Y \mid \mathbf{Z})<0\) then
                \(\mathbf{E} \leftarrow \mathbf{E} \backslash\left\{E_{A Y}\right\}\)
            end if
        end for
        return \(G\)
    end function
```

与とした Bayes factorを用いる CI テストを行い，独立と判定されたノード対の間のエッジをグラフから削除する。以上を探索空間に属する全てのノードに対して繰り返す。
前述のとおり，推移性を有するノード A の探索空間は条件付き独立となる二ノード X, Y の共通子ノード集合を含まな い。 すなわち，推移性を利用したエッジ削除法を利用するた めには事前にエッジを方向付け，子ノードを同定する必要があ る．したがって，無向グラフにおいてエッジを削除するPCア ルゴリズムや MMHCアルゴリズムでは推移性を利用できな い。一方で，RAIアルゴリズムは学習途中にエッジを方向付 けるため，推移性を利用できる。そこで，本研究では推移性を利用したエッジ削除法をRAIアルゴリズムに組み込む。
推移性を用いたエッジ削除法をRAIアルゴリズムに利用する ためには関数 TRANSITIVE＿CUT を関数RAI におけるエッ ジの削除後（Algorithm1 の 12 行目と 20 行目の直後）に呼び出せば良い。ここで，CI テストの次数が 0 のとき，関数 RAI は，推移性の利用の有無に関わらず，全てのノード対に対して一回ずつのCI テストを行わなければならない。そのため，提案手法は関数TRANSITIVE＿CUT を 0 次の CI テストでは呼 び出さず， 1 次以降のときにのみ呼び出す。
提案手法は推移性によって少なくとも一つの条件付き独立性 が保証される二組のエッジの CI テストを優先的に実施できる ため，学習の早期にエッジを削除でき，CI テスト数を削減で きる．制約ベースアプローチの時間計算量はCI テスト数に依存するため，提案手法は計算時間も削減できる。また，データ数が十分に大きくないとき，信頼性の低い CI テストを削減す るため，従来の制約ベースアプローチ以上の学習精度を保証す る．さらに，提案手法は従来では実現してこなかった大規模構造学習の実現を期待できる。

5．比較実験

本提案手法の有効性を示すため，シミュレーション実験によっ て従来では最も高速な手法であるRAIアルゴリズムと比較する。各手法のCI テストには Bayes factor（ESS＝1．0［Ueno 10］） を用いる。真のネットワークとして bnlearn［Scutari 11］に登録されているベンチマークネットワークの munin（ノード数： 1041，エッジ数：1397）と BNGenerator＊${ }^{* 1}$ を用いてランダム に生成したネットワーク random（ノード数：2000，エッジ数： 2973）を使用する．実験は，（1）各ネットワークからデータをラ ンダム生成し，（2）各手法で構造学習することを（3）それぞれ 10 回繰り返すことで行う。ただし， 6 時間の制限時間を設け，超過する場合は実験を打ち切った。評価尺度は，学習速度を表す CI テスト数，計算時間と学習精度を表す Structural Hamming

[^1]表1：実験結果

ネットワーク				
CI テスト数 $\left(\times 10^{3}\right)$				
データ数	RAI	提案	RAI	提案
10,000	560.4	553.4	2024.6	2022.8
20,000	588.9	562.4	2025.6	2022.8
50,000	653.4	575.8	2030.0	2025.1
100,000	705.1	582.1	2034.9	2027.5
200,000	665.3	588.2	-	2031.3
計算時間（秒）				
データ数	RAI	提案	RAI	提案
10,000	773	621	4933	3189
20,000	1593	871	4794	2945
50,000	2587	1457	6354	3625
100,000	4784	2195	7761	6907
200,000	7256	3908	-	13172
SHD				
データ数	RAI	提案	RAI	提案
10,000	504.4	461.8	2736.1	2545.7
20,000	504.1	430.4	2800.1	2546.6
50,000	525.9	404.0	2924.4	2569.6
100,000	552.5	405.6	3037.9	2592.6
200,000	540.6	404.1	-	2627.1

Distance（SHD）［Tsamardinos 06］を使用する．SHD は真の構造と推定された構造間の距離を表し，小さいほど学習精度が高いことを示す。

表1に各手法の学習結果を示す。表1より，提案手法は従来 の RAI アルゴリズムより CI テスト数と計算時間を削減して学習した。したがって，提案手法は大規模構造を従来より高速 に学習できる。また，提案手法は従来のRAI アルゴリズムよ りSHDを減少して学習した。大規模構造ではデータがスパー スになるために CI テストの信頼性が低下する傾向がある。提案手法は CI テストを削減したことで，信頼性の低い CI テス トを減少して学習できたためと考えられる。従来のRAIアル ゴリズムはデータ数 200，000 のときに random を制限時間内 に学習できなかったが，提案手法は全パターンで学習できた。 これより，提案手法は従来手法では実現できない構造学習を実現できる。

6．まとめ

本研究はベイジアンネットワークにおける条件付き独立性 の推移性を示し，Bayes factor を用いた RAI アルゴリズムの CI テストとエッジ削除に推移性を利用した学習手法を提案し た。これにより，学習に要する CI テスト数を削減し，より短 い計算時間で大規模構造学習を実現した。また，信頼性の低い CI テストを減少して学習したために従来手法以上の精度で大規模構造を学習した。 さらに，提案手法は従来手法では実現で きない構造学習を実現した。

今後の課題として，大規模構造学習の精度向上と，推論精度 を最適化する学習やベイジアンネットワーク分類器の厳密学習 への拡張が挙げられる，

参考文献

［Chickering 96］Chickering，D．M．：Learning Bayesian Net－ works is NP－Complete，in Learning from Data：Artificial

Intelligence and Statistics，Vol．V，pp．121－130，Springer （1996）
［Cussens 11］Cussens，J．：Bayesian network learning with cutting planes，in Proceedings of Uncertainty in Artificial Intelligence（UAI），pp．153－160，AUAI Press（2011）
［Heckerman 95］Heckerman，D．，Geiger，D．，and Chicker－ ing，D．：Learning Bayesian Networks：The Combination of Knowledge and Statistical Data，Machine Learning， Vol．20，pp．197－243（1995）
［Natori 17］Natori，K．，Uto，M．，and Ueno，M．：Consistent learning Bayesian networks with thousands of variables， in Advanced Methodologies for Bayesian Networks（Pro－ ceedings of Machine Learning Research），Vol．73，pp．57－ 68 （2017）
［Pearl 00］Pearl，J．：Causality：Models，Reasoning，and In－ ference，Cambridge University Press（2000）
［Scutari 11］Scutari，M．：Learning Bayesian Networks with the bnlearn R Package，Journal of Statistical Software， Vol．35，No．3，pp．1－22（2011）
［Silander 06］Silander，T．and Myllymaki，P．：A simple ap－ proach for finding the globally optimal Bayesian network structure，in Proceedings of Uncertainty in Artificial In－ telligence（UAI），pp．445－452，AUAI Press（2006）
［Spirtes 00］Spirtes，P．，Glymour，C．，and Scheines，R．： Causation，Prediction，and Search，MIT press（2000）
［Steck 02］Steck，H．and Jaakkola，T．：On the Dirichlet Prior and Bayesian Regularization．，in Neural Informa－ tion Processing Systems（NIPS 2002），pp．697－704，MIT Press（2002）
［Tsamardinos 06］Tsamardinos，I．，Brown，L．E．，and Al－ iferis，C．F．：The Max－min Hill－climbing Bayesian Net－ work Structure Learning Algorithm，Machine Learning， Vol．65，No．1，pp．31－78（2006）
［Ueno 10］Ueno，M．：Learning networks determined by the ratio of prior and data，in Proceedings of Uncertainty in Artificial Intelligence（UAI），pp．598－605，AUAI Press （2010）
［Yehezkel 09］Yehezkel，R．and Lerner，B．：Bayesian Net－ work Structure Learning by Recursive Autonomy Identi－ fication，Journal of Machine Learning Research，Vol．10， pp．1527－1570（2009）
［Yuan 11］Yuan，C．，Malone，B．，and Xiaojian，W．：Learn－ ing Optimal Bayesian Networks Using A＊Search，in International Joint Conference on Artificial Intelligence （IJCAI），pp．2186－2191（2011）
［名取 18］名取和樹，宇都雅輝，植野真臣 FBayes factor を用 いた RAI アルゴリズムによる大規模ベイジアンネットワー ク学習，電子情報通信学会論文誌 D，Vol．101，No．5，pp． 754－768（2018）

[^0]: 連絡先：電気通信大学大学院情報理工学研究科，
 東京都調布市調布ケ丘 1－5－1，
 \｛hondak，natori，sugahara，ueno\}@ai.lab.uec.ac.jp

[^1]: ＊1 http：／／sites．poli．usp．br／pmr／ltd／software／ bngenerator／

