
- 1 -

Conditional DCGAN’s Challenge:

Generating Handwritten Character Digit, Alphabet and Katakana
 Rina Komatsu*1 Tad Gonsalves*1

*1 Sophia University

Developing deep learning models has a great potential in assisting human tasks involving design and creativity. This study
deals with generating handwritten characters using deep learning techniques. The task is not simply generating images
randomly, but generating them conditionally, making a distinction according to the UI designates. To solve this task, we
constructed the Conditional DCGAN model which includes the techniques from DCGAN and Conditional GAN. We tried
training the models to be able to generate conditional images by adding label information as input to the Generator. Deep
learning experiments were performed using 141319 training data consisting of 96 kinds of characters including digits, Roman
alphabets and Katakana. The Generator trained by inputting random noise concatenated with the 96 kinds of characters, could
generate each kind of character by just adding the appropriate label information.

Figure 1. Proposed Conditional DCGAN which generates conditional handwritten characters

1. Introduction
Of late, more and more Deep Learning techniques which deal

with generating images are been developed and as a result
realistic images are being generated. In addition to being able to
generate images that are realistic, the potential of deep learning is
immense, such as supplementing blank areas and learning to
imitate styles of famous painters to create artistic images.

To further test the potential of deep learning, we tried
generating handwritten characters by developing a model called
Conditional DCGAN which combines DCGAN with cGAN
(Conditional GAN). A conditional label is added as additional
input along with the image input to the model. The target kinds
of character we dealt with in this study are not only digits, but
also alphabets and katakana (Japanese script) and some special
characters. The goal of this study is generating handwritten
characters by making a distinction among more than 90 different
kinds of them.

 In our experiment, we obtained results by changing the
dimensions of the random noise which is part of the input for the
models. It can be inferred from our results that when the number
of dimensions of noise falls below the number of labels, the
model cannot generate images that are likely to be characters;
and on the other hand, if the number of types exceeds 90, the

model can generate the specified characters.

2. Related Work
 We construct the model (the architecture shows in Figure 1)

based on the techniques from DCGAN and cGAN. This section
introduces generating method: GAN and DCGAN, also introduce
cGAN to generate conditional images.

2.1 GAN & DCGAN
GAN: Generative Adversarial Net [Ian J. Goodfellow, 2014] is

a generative network model that generates images by training a
Generator and a Discriminator that are tied together in an
adversarial relationship. The Generator plays the role of
generating images from a given probability density distribution
with random noise input, while the Discriminator plays the role
of distinguishing the real input data from the fake data generated
by the Generator. However, GAN has the weak points that the
probability density distribution Generator learns is unable to
indicate clearly and training Generator and Discriminator tend to
unstable [Naoki Shimada et al, 2017].

DCGAN: Deep Convolutional Generative Adversarial
Network [Alec Radford et al, 2015] is a generative model
designed to solve this weak point by employing stable learning
techniques such constructing fractional-strided convolution in
Generator and strided convolution in Discriminator, in addition,
instead of pooling layers, adapting batch normalization [Sergey Contact: Rina Komatsu, Faculty of Science & Technology,

Sophia University, Tokyo, Japan, r_komatsu@outlook.com

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3B3-E-2-04

- 2 -

Ioffe et al, 2015] to each layer and so on. The Generator in
DCGAN extends the information through upsampling from
random noise input, while the Discriminator extracts feature
maps through convolutions. As a result, DCGAN succeeds in
generating more realistic images than GAN.

About how to calculate Loss GAN and DCGAN utilize
Discriminator’s output in loss function shown in formulae (1)
and (2) to update each the parameters of each model. Formula (1)
is loss function for Discriminator and (2) is the one for Generator.
If the Discriminator learns good work in distinguishing, then
log(D(x)) increases and 1-log(G(z)) decreases on the contrary.
On the other hand, if the Generator reaches a matured level that
deceives the Discriminator, then log(D(z)) increases.

(1)

 (2)

where,
x is the training sample data, and
G(z) is the Generator’s output from random noise z.

2.2 cGAN: Conditional GAN
cGAN: Conditional GAN [Mehdi Mirza et al, 2014] is the

generative model which can output designated images by adding
auxiliary information (represented as one-hot vector) such as a
label corresponding with the kinds or modality to Generator after
finishing training in the Generator and Discriminator.

Figure 2 shows a simplified structure of Conditional
Adversarial Nets dealing with the auxiliary information. Random
noise z and an auxiliary information y are input to the Generator
combined forward to hidden layer. These jointed data help the
Generator to suggest the probability density distribution to which
the training sample data belongs. Also, training sample data x or
generated ones G(z|y) and y are input to Discriminator combined
in same.

Figure 2. Simple Structure of Conditional Adversarial Net
(adapted from Figure 1 in [Mehdi Mirza et al, 2014])

2.3 Conditional DCGAN (Constructed model in this
study)

Figure 1 is the structure of proposed model in this study
through trial and error finding stable training between Generator
and Discriminator relatively quickly. In section 4 “Result”
introduces the result using the Generator in this architecture.

Explaining details in this proposed model, Generator and
Discriminator have the common factor that there is additional

input named the auxiliary information represented one -hot (In
this study, the auxiliary information is replaced to the label
information related with the kind of characters). In Generator, the
random noise z which consists of the number of dimensions nz
and label information c are merged and input to Liner layers,
then proceeded to up-sampling as output G(z,c) by deconvolution.
In Discriminator, c is transposed to channel representation c’
since Discriminator’s input is represented with channel like
training sample data x or G(z,c), then merged them and extract
feature maps by convolution. When proceeded to convolution,
input in each layer is added some noise for stable learning
[Martin Arionsky et al, 2017].

Generator, Discriminator Loss is obtained by using the output
from Discriminator like GAN and DCGAN. Formula (3) is loss
function for Discriminator and (4) is the one for Generator.

(3)

 (4)

3. Experiment

3.1 Handwritten character dataset
As the target for handwritten character dataset, we used ETL-1

Character Database [Electrotechnical Laboratory, 1973-1984]
from Electrotechnical Laboratory (succeeding organization:
National Institute of Advanced Industrial Science and
Technology).

In the ETL-1 Character Database, the handwritten character
images are grayscale and have a unified size of 64×63. The
dataset contains 96 different characters: 10 Arabic numerals, 26
large alphabets, 12 special characters and 48 katakana letters.
These handwritten characters were collected from 1445 writers,
by making each writer write one character at a time on an OCR
sheet. The total number of samples collected were 141,319.

In the training process of the Generator and the Discriminator,
we treated this dataset as training sample data x.

3.2 Experiment Environment
 The training of the Generator and Discriminator to distinguish

96 different kinds of characters is implemented in the Python
programming language and Chainer deep learning library [Seiya
Tokui et al, 2015]. We also used NVIDIA GeForce GTX 1080 Ti
graphic boards to speed up the training as much as possible.

3.3 Experiment Setup
As an initial setting, the whole training sample images are

resized to 64×64 and set the weight decay parameter λ= 0.00001.
The following steps count as 1 epoch. We repeated training the

Generator and Discriminator for 100 epochs, every time
employing a minibatch size 50.

Step 1:
This step consists in preparing the Generator’s input, random
noise and the label information. Random noise z is generated
from uniform random distribution in the range [-1, 1], setting the
number of dimensions as nz. Label information c is represented

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3B3-E-2-04

- 3 -

with one-hot vector corresponding to the ID related to each type
of character. The data shape of c becomes (batch size, label num,
1).
Step 2:
The z and c inputs are merged into the Generator to generate the
output data G(z, c).
Step 3:
To the Discriminator, G(z,c) as fake data is input merged with c’
which is represented in channel from c (The data shape of c’
becomes (batch size, label num, h, w)). Next, the training sample
data x is input merged with c’.
Step 4:
From the Discriminator’s output, Generator and Discriminator
Loss is calculated and the relevant parameters are updated in
each model. As an optimization function, we employed the
Adam function [Diederik P. Kingma et al, 2014]. The Adam
function parameters in the Generator and Discriminator network
models which assisted stable training in our study are shown in
Table 1.

Table 1: Adam function parameters
Parameters 1

Generator 0.001 0.5
Discriminator 0.0002 0.5

4. Result
Using the Generator in our Conditional DCGAN, this section

introduces the generated result changing nz
=32,64,96(corresponding to the number of character kinds),
256,1024 and 4096(same to whole image size we set).

4.1 Generating conditional handwritten characters
To make sure the Generator output handwritten characters

designating c, we prepared 5 kinds of characters. Figure 3 shows
each kind of handwritten character image picked up from
training sample data.

Figure 3. The targets for generating (picked up from ETL-1
Character Database)

Figure 4 is the result generated by using Generators of varying
nz values. In the images depicted in Figure 4, vertical axis means
the output changing label information and horizontal axis means
the output using different random noise z.

From the results in nz=32,64 and 96, we can see that there are
outputs which are likely handwritten characters, but they do not
reflect the label information. Most output were the handwritten
character not belong to the kind in training sample data. Also,
same images are generated although changing z.

On the other hand, in Generator with nz set to 256, 1024, 4096,
it is possible to generate by reflecting the designation of target
character type. Thus, there is no confusion between similar
characters such as "8" and "S", " " and " " which are similar in
shape. Moreover, in the result of changing the random noise, it
was possible to generate an image in which its peculiarity
appeared rather than a similar image, such as when the character
is large or small, or the thickness of the line is different.

Moreover, it was able to generate distinct characters despite the
size being smaller (nz = 256; image size: 64 × 64).

Figure 4. Conditional output from Generator changing nz

4.2 Loss changes in Generator and Discriminator
The Loss specific to the Generator and Discriminator for each

epoch is shown in Figure 5.

Figure 5. Loss changes from epoch 1-100.

As can be seen in Figure 5, in the model nz = 32,64,96, as the
epochs progressed, the Generator Loss steadily increased, while
the Discriminator loss gradually decreased near to 0. The
difference in loss between Generator and Discriminator at epoch
wider than the ones in conditional image generation. This result
implies that gradient vanishing occurred in the Generator since
Discriminator learned to distinguish between the real data and
the fake data much before the Generator optimized to deceive the
matured Discriminator [Ian Goodfellow, 2016].

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3B3-E-2-04

- 4 -

 Figure 6 shows the result of generating the whole of 96 kinds
of characters as the target we set, from a larger nz=4096 to a
smaller nz=256. Each Generator could output almost all kinds of
handwritten images, making distinction just by changing the
label information.

It can be inferred from our results that when the number of
dimensions of noise falls below the number of labels, the model
cannot generate images that are likely to be characters; on the
other hand, if the number of types exceeds 90, the model can
generate the specified characters.

Figure 6. Handwritten characters produced by Generator

5. Conclusion and Future work
In this study, to be able to generate handwritten characters

distinguishing among 96 different kinds of characters by adding

UI designation, we constructed Conditional DCGAN. This model
adapted DCGAN techniques using deconvolution for up-
sampling at the Generator and convolution for extracting feature
maps, and cGAN technique that adds label information to
Generator and Discriminator. Through training our Generator
and Discriminator with the dimension of random noise over the
kinds, Generator could output the entire set of characters as a
result.

In our future work, since the data shape of label information at
the Discriminator in Figure 1 is (batch size, label num, h, w),
large load will be applied to the model if dealing with over
thousand kinds of characters like kanji. To solve this problem,
constructing more compact Discriminator so that Discriminator’s
label information could keep the shape same as the one generated
by the Generator and compressed through linear function. We
want to try generating conditional images making distinction
among over thousand kinds of images with compact Conditional
DCGAN as the next challenge.

References
[Ian J. Goodfellow et al, 2014] Ian J. Goodfellow, Jean Pouget-

Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville & Yoshua Bengio: Generative
Adversarial Nets, Advances in neural information processing
systems, pp. 2672-2680, 2014.

[Naoki Shimada et al, 2017] Naoki Shimada & Takeshi Ooura:
INTRODUCTION TO DEEP LEARNING WITH Chainer,
Gijutsu-Hyohron Co (Japan), 2017.

[Alec Radford et al, 2015] Alec Radford, Luke Metz & Soumith
Chintala: Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, arXiv
preprint arXiv:1511.06434, 2015.

[Sergey Ioffe et al, 2015] Sergey Ioffe & Christian Szegedy:
Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, arXiv preprint
arXiv:1502.03167, 2015.

[Mehdi Mirza et al, 2014] Mehdi Mirza & Simon Osindero:
Conditional Generative Adversarial Nets, arXiv preprint
arXiv:1411.1784, 2014.

[Martin Arjovsky et al, 2017] Martin Arjovsky & Léon Bottou:
Towards Principled Methods for Training Generative
Adversarial Networks, arXiv preprint arXiv:1701.04862,
2017.

[Electrotechnical Laboratory, 1973-1984] Electrotechnical
Laboratory: Japanese Technical Committee for Optical
Character Recognition ETL Character Database 1973-1984

[Seiya Tokui et al, 2015] Seiya Tokui, Kenta Oono, Shohei Hido
& Justin Clayton: Chainer: a Next-Generation Open Source
Framework for Deep Learning, Proceedings of workshop on
machine learning systems (LearningSys) in the twenty-ninth
annual conference on neural information processing systems
(NIPS). Vol. 5, pp. 1-6,2015.

[Diederik P. Kingma, 2014] Diederik P. Kingma & Jimmy Lei
Ba: Adam: A Method for Stochastic Optimization, arXiv
preprint arXiv:1412.6980, 2014.

[Ian Goodfellow, 2016] Ian Goodfellow: NIPS 2016 Tutorial:
Generative Adversarial Networks, arXiv preprint
arXiv:1701.00160, 2016.

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3B3-E-2-04

