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Conditional DCGAN’s Challenge: 

Generating Handwritten Character Digit, Alphabet and Katakana 
 Rina Komatsu*1 Tad Gonsalves*1

*1 Sophia University 

Developing deep learning models has a great potential in assisting human tasks involving design and creativity. This study 
deals with generating handwritten characters using deep learning techniques. The task is not simply generating images 
randomly, but generating them conditionally, making a distinction according to the UI designates. To solve this task, we 
constructed the Conditional DCGAN model which includes the techniques from DCGAN and Conditional GAN. We tried 
training the models to be able to generate conditional images by adding label information as input to the Generator. Deep 
learning experiments were performed using 141319 training data consisting of 96 kinds of characters including digits, Roman 
alphabets and Katakana. The Generator trained by inputting random noise concatenated with the 96 kinds of characters, could 
generate each kind of character by just adding the appropriate label information. 

Figure 1. Proposed Conditional DCGAN which generates conditional handwritten characters 

1. Introduction 
Of late, more and more Deep Learning techniques which deal 

with generating images are been developed and as a result 
realistic images are being generated. In addition to being able to 
generate images that are realistic, the potential of deep learning is 
immense, such as supplementing blank areas and learning to 
imitate styles of famous painters to create artistic images. 

To further test the potential of deep learning, we tried 
generating handwritten characters by developing a model called 
Conditional DCGAN which combines DCGAN with cGAN 
(Conditional GAN). A conditional label is added as additional 
input along with the image input to the model. The target kinds 
of character we dealt with in this study are not only digits, but 
also alphabets and katakana (Japanese script) and some special 
characters. The goal of this study is generating handwritten 
characters by making a distinction among more than 90 different 
kinds of them. 

 In our experiment, we obtained results by changing the 
dimensions of the random noise which is part of the input for the 
models. It can be inferred from our results that when the number 
of dimensions of noise falls below the number of labels, the 
model cannot generate images that are likely to be characters; 
and on the other hand, if the number of types exceeds 90, the 

model can generate the specified characters. 

2. Related Work 
 We construct the model (the architecture shows in Figure 1) 

based on the techniques from DCGAN and cGAN. This section 
introduces generating method: GAN and DCGAN, also introduce 
cGAN to generate conditional images. 

2.1 GAN & DCGAN 
GAN: Generative Adversarial Net [Ian J. Goodfellow, 2014] is 

a generative network model that generates images by training a 
Generator and a Discriminator that are tied together in an 
adversarial relationship. The Generator plays the role of 
generating images from a given probability density distribution 
with random noise input, while the Discriminator plays the role 
of distinguishing the real input data from the fake data generated 
by the Generator.  However, GAN has the weak points that the 
probability density distribution Generator learns is unable to 
indicate clearly and training Generator and Discriminator tend to 
unstable [Naoki Shimada et al, 2017]. 

DCGAN: Deep Convolutional Generative Adversarial 
Network [Alec Radford et al, 2015] is a generative model 
designed to solve this weak point by employing stable learning 
techniques such constructing fractional-strided convolution in 
Generator and strided convolution in Discriminator, in addition, 
instead of pooling layers, adapting batch normalization [Sergey Contact: Rina Komatsu, Faculty of Science & Technology, 
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Ioffe et al, 2015] to each layer and so on. The Generator in 
DCGAN extends the information through upsampling from 
random noise input, while the Discriminator extracts feature 
maps through convolutions. As a result, DCGAN succeeds in 
generating more realistic images than GAN. 

About how to calculate Loss GAN and DCGAN utilize 
Discriminator’s output in loss function shown in formulae (1) 
and (2) to update each the parameters of each model. Formula (1) 
is loss function for Discriminator and (2) is the one for Generator. 
If the Discriminator learns good work in distinguishing, then 
log(D(x)) increases and 1-log(G(z)) decreases on the contrary. 
On the other hand, if the Generator reaches a matured level that 
deceives the Discriminator, then log(D(z)) increases. 

(1) 

 (2) 

where, 
x is the training sample data, and 
G(z) is the Generator’s output from random noise z. 

2.2 cGAN: Conditional GAN 
cGAN: Conditional GAN [Mehdi Mirza et al, 2014] is the 

generative model which can output designated images by adding 
auxiliary information (represented as one-hot vector) such as a 
label corresponding with the kinds or modality to Generator after 
finishing training in the Generator and Discriminator. 

Figure 2 shows a simplified structure of Conditional 
Adversarial Nets dealing with the auxiliary information. Random 
noise z and an auxiliary information y are input to the Generator 
combined forward to hidden layer. These jointed data help the 
Generator to suggest the probability density distribution to which 
the training sample data belongs. Also, training sample data x or 
generated ones G(z|y) and y are input to Discriminator combined 
in same. 

Figure 2. Simple Structure of Conditional Adversarial Net 
(adapted from Figure 1 in [Mehdi Mirza et al, 2014]) 

2.3 Conditional DCGAN (Constructed model in this 
study) 

Figure 1 is the structure of proposed model in this study 
through trial and error finding stable training between Generator 
and Discriminator relatively quickly. In section 4 “Result” 
introduces the result using the Generator in this architecture. 

Explaining details in this proposed model, Generator and 
Discriminator have the common factor that there is additional 

input named the auxiliary information represented one -hot (In 
this study, the auxiliary information is replaced to the label 
information related with the kind of characters). In Generator, the 
random noise z which consists of the number of dimensions nz 
and label information c are merged and input to Liner layers, 
then proceeded to up-sampling as output G(z,c) by deconvolution. 
In Discriminator, c is transposed to channel representation c’ 
since Discriminator’s input is represented with channel like 
training sample data x or G(z,c), then merged them and extract 
feature maps by convolution. When proceeded to convolution, 
input in each layer is added some noise for stable learning 
[Martin Arionsky et al, 2017].  

Generator, Discriminator Loss is obtained by using the output 
from Discriminator like GAN and DCGAN. Formula (3) is loss 
function for Discriminator and (4) is the one for Generator.

(3)

 (4)

3. Experiment 

3.1 Handwritten character dataset 
As the target for handwritten character dataset, we used ETL-1 

Character Database [Electrotechnical Laboratory, 1973-1984] 
from Electrotechnical Laboratory (succeeding organization: 
National Institute of Advanced Industrial Science and 
Technology). 

In the ETL-1 Character Database, the handwritten character 
images are grayscale and have a unified size of 64×63. The 
dataset contains 96 different characters: 10 Arabic numerals, 26 
large alphabets, 12 special characters and 48 katakana letters. 
These handwritten characters were collected from 1445 writers, 
by making each writer write one character at a time on an OCR 
sheet. The total number of samples collected were 141,319.  

In the training process of the Generator and the Discriminator, 
we treated this dataset as training sample data x. 

3.2 Experiment Environment 
 The training of the Generator and Discriminator to distinguish 

96 different kinds of characters is implemented in the Python 
programming language and Chainer deep learning library [Seiya 
Tokui et al, 2015]. We also used NVIDIA GeForce GTX 1080 Ti 
graphic boards to speed up the training as much as possible. 

3.3 Experiment Setup 
As an initial setting, the whole training sample images are 

resized to 64×64 and set the weight decay parameter λ= 0.00001. 
The following steps count as 1 epoch. We repeated training the 

Generator and Discriminator for 100 epochs, every time 
employing a minibatch size 50. 

Step 1: 
This step consists in preparing the Generator’s input, random 
noise and the label information. Random noise z is generated 
from uniform random distribution in the range [-1, 1], setting the 
number of dimensions as nz. Label information c is represented 
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with one-hot vector corresponding to the ID related to each type 
of character. The data shape of c becomes (batch size, label num, 
1). 
Step 2: 
The z and c inputs are merged into the Generator to generate the 
output data G(z, c). 
Step 3: 
To the Discriminator, G(z,c) as fake data is input merged with c’
which is represented in channel from c (The data shape of c’
becomes (batch size, label num, h, w)). Next, the training sample 
data x is input merged with c’. 
Step 4: 
From the Discriminator’s output, Generator and Discriminator 
Loss is calculated and the relevant parameters are updated in 
each model. As an optimization function, we employed the 
Adam function [Diederik P. Kingma et al, 2014]. The Adam 
function parameters in the Generator and Discriminator network 
models which assisted stable training in our study are shown in 
Table 1. 

Table 1: Adam function parameters 
Parameters 1

Generator 0.001 0.5 
Discriminator 0.0002 0.5 

4. Result 
Using the Generator in our Conditional DCGAN, this section 

introduces the generated result changing nz
=32,64,96(corresponding to the number of character kinds), 
256,1024 and 4096(same to whole image size we set). 

4.1 Generating conditional handwritten characters 
To make sure the Generator output handwritten characters 

designating c, we prepared 5 kinds of characters. Figure 3 shows 
each kind of handwritten character image picked up from 
training sample data. 

Figure 3. The targets for generating (picked up from ETL-1 
Character Database) 

Figure 4 is the result generated by using Generators of varying 
nz values. In the images depicted in Figure 4, vertical axis means 
the output changing label information and horizontal axis means 
the output using different random noise z. 

From the results in nz=32,64 and 96, we can see that there are 
outputs which are likely handwritten characters, but they do not 
reflect the label information. Most output were the handwritten 
character not belong to the kind in training sample data. Also, 
same images are generated although changing z.  

On the other hand, in Generator with nz set to 256, 1024, 4096, 
it is possible to generate by reflecting the designation of target 
character type. Thus, there is no confusion between similar 
characters such as "8" and "S", " " and " " which are similar in 
shape. Moreover, in the result of changing the random noise, it 
was possible to generate an image in which its peculiarity 
appeared rather than a similar image, such as when the character 
is large or small, or the thickness of the line is different. 

Moreover, it was able to generate distinct characters despite the 
size being smaller (nz = 256; image size: 64 × 64). 

Figure 4. Conditional output from Generator changing nz 

4.2 Loss changes in Generator and Discriminator 
The Loss specific to the Generator and Discriminator for each 

epoch is shown in Figure 5. 

Figure 5. Loss changes from epoch 1-100. 

As can be seen in Figure 5, in the model nz = 32,64,96, as the 
epochs progressed, the Generator Loss steadily increased, while 
the Discriminator loss gradually decreased near to 0. The 
difference in loss between Generator and Discriminator at epoch 
wider than the ones in conditional image generation. This result 
implies that gradient vanishing occurred in the Generator since 
Discriminator learned to distinguish between the real data and 
the fake data much before the Generator optimized to deceive the 
matured Discriminator [Ian Goodfellow, 2016]. 
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 Figure 6 shows the result of generating the whole of 96 kinds 
of characters as the target we set, from a larger nz=4096 to a 
smaller nz=256.  Each Generator could output almost all kinds of 
handwritten images, making distinction just by changing the 
label information. 

It can be inferred from our results that when the number of 
dimensions of noise falls below the number of labels, the model 
cannot generate images that are likely to be characters; on the 
other hand, if the number of types exceeds 90, the model can 
generate the specified characters. 

Figure 6. Handwritten characters produced by Generator 

5. Conclusion and Future work 
In this study, to be able to generate handwritten characters 

distinguishing among 96 different kinds of characters by adding 

UI designation, we constructed Conditional DCGAN. This model 
adapted DCGAN techniques using deconvolution for up-
sampling at the Generator and convolution for extracting feature 
maps, and cGAN technique that adds label information to 
Generator and Discriminator. Through training our Generator 
and Discriminator with the dimension of random noise over the 
kinds, Generator could output the entire set of characters as a 
result.  

In our future work, since the data shape of label information at 
the Discriminator in Figure 1 is (batch size, label num, h, w), 
large load will be applied to the model if dealing with over 
thousand kinds of characters like kanji. To solve this problem, 
constructing more compact Discriminator so that Discriminator’s 
label information could keep the shape same as the one generated 
by the Generator and compressed through linear function. We 
want to try generating conditional images making distinction 
among over thousand kinds of images with compact Conditional 
DCGAN as the next challenge. 
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