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Bidirectional LSTM  
Misspelling Detection by using Multiple Bidirectional LSTM Networks 

*1                  *1                   *2                  *1 
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Companies in the RECRUIT Group provide matching business between clients and customers, and create lots of manuscripts 
every day in order to tell the attractiveness of our clients. In this paper, we propose a method for detecting misspelling in 
manuscripts with machine learning. That system mainly consists of two parts. One is the multiple Bidirectional LSTM networks 
to estimate the probabilities of correctness in each characters. The other is the random forests algorithm to decide what sentence 
is correct or not by using outputs of these networks. The efficacy of our approach is demonstrated on two datasets: artificial 
sentences and real manuscripts created in our services. 
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