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Deep reinforcement learning has provided outstanding results in various applications. Deep neural networks are
usually trained by gradient-based methods. However, when deep reinforcement learning is applied to a robotic
swarm, that is composed of many robots, it is difficult to design reward functions that lead to a desired collective
behavior. In this paper, we applied deep neuroevolution, which is a technique to optimize deep neural networks
with artificial evolution, to design controllers of a robotic swarm. Deep neuroevolution is expected to evolve deep
neural networks to different reward/fitness landscapes because it optimizes with population-based and gradient-
free methods. This paper shows that the controllers designed with deep neuroevolution give robustness to different
reward settings compared to deep reinforcement learning.
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