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Deep learning technologies in the field of computer vision are gradually introducing into our daily life. These
technologies have been achieved by introducing the methods that improve recognition performance, such as deeper
models, a method of stability training of the deeper model. Moreover, to achieve the productization, the visual
explanation that explains the decision making of deep learning to a user has been proposed. In this paper, we
present a trend of deep learning technologies, which have been used on image recognition methods such as image
classification, object detection, and visual explanation.
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