
Cooperation Model for Improving Scalability of

the Multi-Blockchains System

Liu Keyang Ohsawa Yukio Teruaki Hayashi

Department of System Innovation, Graduate School of Engineering, The University of Tokyo

Scalability is an open question of the blockchain. Ongoing solutions, like Sharding and Side-chain, try to solve it
within an independent blockchain system. We propose a cooperation model by constructing a system of multiple
blockchains. In this model, secure cross chain operations can help to handle more requests. The gossip channel
can help to refresh the states of other blockchains. Through manage interactions among blockchain systems, this
model can limit their misbehaviors and improve scalability.

1. INTRODUCTION

Blockchain, a solution to decentralized systems, can

solve problems in fields like finance[Eyal 2017], supply

chain[Abeyratne 2016], crowdsourcing [Li 2018]. Currently,

blockchain can provide two functions. First, a blockchain

can work as a securely distributed ledger[Ren 2018]. Sec-

ond, a blockchain can provide a reliable distributed calculat-

ing platform. By using smart contracts[Underwood 2016],

all participants can execute functions correctly and give the

same output.

Generally, a decentralized system is more robust and

trusted than a centralized system. However, the scalability

is its weakness. Scalability problem is the long latencies or

superfluous messages caused by growing participants. Usu-

ally, it is a result of the consensus algorithm[Karame 2016].

Many solutions try to solve this problem within a blockchain

system. Sidechain shifts some assets into a sidechain to

realize faster responses[Back 2014]. Sharding technology

tries to split participants into several shardings for parallel

processing[Luu 2016]. All these works sacrifice security or

consistency for the efficient responses.

This work tries to solve the scalability problem

through cooperative problem-solving. In this model, each

blockchain system is an independent agent. The contri-

butions of this work are 1. A protocol for delivery versus

payment(DVP) problem. 2. The framework of Blockchain’s

cooperation model.

2. RELATED WORKS

Sharding is an exciting idea that split blockchain into sev-

eral shardings so they can handle requests simultaneously.

This idea shares some similarity with multiple blockchains

system. Elastico[Luu 2016] and Rapid chain[Zamani 2018]

are some great implementations of this solution. In these

systems, the randomness of each sharding limits the pos-

Contact: Liu Keyang, University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-8656 Japan, Department of

Systems Innovation, School of Engineering,The Uni-

versity of Tokyo, Bldg.No.8. 507 , 070-4336-1780,
stephenkobylky@gmail.com

sibility of collusion and planned attacks. However, they

give up security or consistency to some degree. To solve

this problem, we propose a framework to weaken secure

assumptions of each blockchain. By considering possible

attack happens, this work focus on limiting the effect of at-

tacks. Hence, our model allows more sacrificing of security

on individual blockchain while providing better services.

Chen et al[Chen 2017] and Kan et al[Kan 2018] had fin-

ished some works about the communication between dif-

ferent blockchains. They simulate Internet stack and TCP

protocol to create the Inter blockchain communication pro-

tocol. Although these methods are functional, they are

also fragile to malicious attacks. Besides, they ignored the

achievements of the consensus algorithm which is very use-

ful in DVP problem. This work will consider the case that

some blockchains are controlled or created by attackers. We

can prove that these attacks cannot affect other blockchains.

3. PROBLEM MODEL

This part will clarify assumptions and notations of this

model. First, N = 1, 2, ...n represents the set of agents.

Each agent i is a distributed network that maintains one

blockchain Bi[] with all terminated blocks list linearly. The

participants of each agent run the consensus algorithm to

maintain the blockchain and provide their services to users.

Terminated block means at least fi > 0.5 participants have

confirmed and stored the block. fi is the parameter of each

agent’s consensus algorithm.

Second, all block contents two parts: header and body.

A header contains at least the hash of the previous Block,

metadata of the body, and signatures of the creator. For

convenience, all blockchains’ contents, like transactions or

Key-Value pair, is unified under an abstracted class – log.

Each agent should support two operations: verify and

checki. verify(log, h) will return the validity of one log

before the hth block Bi[h] according to the rule of the

blockchain. Taking a Bitcoin’s transaction as an exam-

ple, input should be a subset of unspent transaction output

(UTXO), and the sum of inputs should be larger than the

sum of outputs. checki(log) returns the position of one log

in Bi. It will return -1 when it does not exist. Hence, the

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3H3-E-3-02

following property held:

• a.(Validity) ∀h > 0 and log ∈ Bi[h], verifyi(log, T) =

True for T < h and verifyi(log, T) = False for T > h.

• b.(Agreement) If checki(log) == True, log can be ac-

cessed from at least fi part of participants in agent

i.

Third, we assume adding one legal log into a blockchain

consume resources for all agents. Under this condition,

cross chain operation becomes a DVP problem. Off-line

cost’s DVP problem is the job of exchanges. This work

focus on the online DVP problem between two agents. Co-

operation model will guarantee the payment’s validity stick

to the delivery of goods.

Last, we allow an agent itself can work improperly or at-

tack some other agents. Since an agent can work indepen-

dently, agents need some mechanism to control the effect of

attacks. One naive way is creating a higher layer blockchain

among different agents so it can be byzantine fault tolerate.

This work uses another lightweight method. We create an

externality of each cross-chain operation without affecting

other agents. However, these externalities can prove the ex-

istence of misbehavior and punish the agent by detaching

it from the network.

4. COOPERATION MODEL

This section includes the detail of the cooperation model.

To begin with, we defined two extended functions for each

participant of agents in our model.

4.1 Extended operation
Define a condition log clog1 = log1||log2||j||h1||h2 rep-

resents log1 is a cross chain operation related to log2 in

agent j. The expiration height for a condition log is h1

and h2 in agent i and j. All participants of agents main-

tain a waiting list(WL) for cross chain log and condition

log. WL supports a function condcheck(). When clog1 and

log1 are stored together in WL, condcheck(log1) = clog

and condcheck(clog1) = log1. In other cases, it returns the

existence of input log in WL.

Next, we need to define the extended func-

tion checkEXi(log1). Let checkEXi(log1)=-1 if

condcheck(log1) = True. If condcheck(log1) = clog1,

checkEXi(log1) = checki(clog1). In other

cases,checkEXi(log1) = checki(log1). checkEXi(clog1) =

checki(clog1)

Then, we define function verifyEx(log, h) in algorithm 1.

4.2 Workflow
By using previous notations, the operations to WL are

following:

• When the new terminated block contains a condition

log clog1, all participants add clog1 and log1 into their

WL.

Algorithm 1 verifyEx

Input: log1 or clog1, h

Output: True or False

1: if Input is normal log then

2: if condcheck(log1)! = clog1 then

3: return verify(log1, h)

4: else

5: return checkEXi(clog1) ≥ 0 &

checkEXi(log1) < 0 & checkEXj(clog2) ≥ 0

& verify(log1, h)

6: end if

7: else if condcheck(clog)! = False then

8: return False

9: else

10: return h < h1&verify(log1, h)

11: end if

• Expire: When Bi[h1] is terminated clog1 is re-

moved from WL. WhencheckEXj(log2) ≥ 0 and

checkEXi(log1) ≥ 0 log1 and clog1 is removed.

the workflow of cross chain operations are following:

• 1. Register: A user submits clog1 to one participant.

Participants check verifyEXi(clog1, ht) where ht is

the current height of blockchain Bi. If it returns True,

commit clog1 to next block.

• 2. Condition-commit: If the newest terminated Blocks

contain clog1, all participants add clog1 and log1 to

their WL.

• 3. Pre-commit: User submits log1 to one partici-

pant.The participant checks verifyEXi(log1, h). If it

is true, commit log1 to next block.

• 4. Commit: When the height of blockchain

reaches h1, participant check checkEXi(log1) and

checkEXj(log2) to determine whether to expire clog1.

The workflow of a success cross chain operation looks like

Figure 1.

Till now, we have clarified main steps of a cross chain op-

eration. The final step is to broadcast the latest view, like

the hash of last terminated block header, of both agents.

One agent can use a gossip channel to notify other agents

of updating. This gossip is not necessary to be received or

confirmed. However, an agent can reveal a fork by identi-

fying an unmatched view of one agent.

4.3 Communication rule
In the cooperation model, each blockchain is an agent to

act. Hence, verifying the status of one agent demands suf-

ficient supports from its participants. Due to the property

of agreement, secure connection with one agent i anchors

to the parameter fi. For a given possibility p , the required

confirmations mi should satisfied (1 − fi)
mi < p. Hence,

mi ≥ p
ln(1−fi)

.

A secure communication requires enough participants of

agent i asks for mj confirmations from agent j indepen-

dently. The communication cost is O(mi ∗ mj) per time.

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3H3-E-3-02

Figure 1: The work flow of one cross chain operation.

An efficient way is to select some proxies to do this commu-

nicate. Once selected proxies confirmed checkEXj(), they

can spread the gossip information among agent i. Under

this method, the cost is O(mi). For preventing collusion,

participants should randomly select proxies.

5. ANALYSIS AND EXPERIMENT

5.1 Function analysis
To view other possible situations of this protocol, we can

consider the states of WL. WL can allow three statues:1.

Null,2. clog1 and log1, 3. log1. Table 1 shows the result

of VerifyEX and CheckEX, where the condition is the 3rd

line in Algorithm 1. When a user submits clog1, only case

1 and case 3 can continue. Case 3 means new condition

log is a supplement to an expired one which jumps to the

final stage. When a user submits log1 at case 3, partici-

pants can detect that it is a rejected log. As a result, on

one can admit a existed cross chain operation log1 without

satisfying a condition clog1. This is the cost of agreement

in a blockchain.

Assumes log′ is conflicted with log1, which indicates the

terminated blockchain can only contain one of them. The

condition for committing log′, checkEXi(log1) should be

less than 0. Since termination requires admissions of at

least half of all participants, they can exclude the possibil-

ity of conflicts within the blockchain. Once a terminated

block contains log′, it is impossible to activate log1 in case

3 any more. The reason is clog1 is also conflicted with log′.

Func

WL
Null Clog&log log

VerifyEX(clog) Verify(Log) False Verify(Log)

CheckEX(clog) check(clog) check(clog) check(clog)

VerifyEX(log) Verify(Log) condition Verify(Log)

CheckEX(log) check(log) check(clog) -1

Table 1: Result of VerifyEX(ignore h) and CheckEX

Hence, by using the property of Blockchain, this protocol

can solve the DVP problem of cross chain operations.

5.2 Security analysis
This part provides some brief proofs of security. Gener-

ally, there are two types of attacks: agent’s misbehaviors

and communication attacks. During the protocol, the only

information needed about other agent is function checkEX

which affect by WL and terminated blocks. Hence, Adjust-

ing can detect the counterfeit WL and Bi. Once attacker

Eve controls the agent j, j can reply to other agents arbi-

trary and support any cross-chain operations. After com-

pleting a cross chain operation, Eve can create a fork to

repeal the existed log. In this case, agents that received

the previous view of j will anchor to the elder branch and

reject new branch inherit the identity of j. The network

will wait for j recovering the former branch and continue

its services. Here, the gossip channel creates an externality

of an agent so that it cannot change its termination within

the network. The higher rate to verify gossip, the higher

termination the model can propose.

Besides, there are some network attacks like Sybil attacks

and DDOS attack among agents. Sybil attack means the

attacker create several agents in the model to arrange at-

tacks. However, these bot agents need to spend enough

resources to convince users of other agents for one round

attack. Hence, this attack is not profitable if users can

manage their risk. Another way is isolating one agent like

Man in the Middle(MITM) attack to block gossips. This at-

tack is very costly when the target is a distributed network.

A fixed and reliable channels can also resolve this attack.

In a word, the resilience against manufactured identities

depends on the value of each agent. Lastly, DDOS attacks

also worth considering. Attackers can attack waiting list by

creating many useless conditional logs. The solution can be

charging an additional fee for registering cross chain opera-

tion. Indeed, cross chain operations require extra payment

for stronger termination and complex procedures. The most

significant problem relates to the gossip channel where re-

dundancy informs can block useful gossip. Hence, the gossip

channel needs some rule for filtering. Agents can require a

signature for each message, limit frequency of source agents,

create some periodical routes.

5.3 Experiment
This work intended to improve the scalability of one agent

through cross chain operation. The experiment evaluated

the average latency and gossip burden for different rates of

cross chain operations in the worst case. Latency is eval-

uated by the number of blocks for solving same amount

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3H3-E-3-02

of requests. Gossip represents the number of message

sent in gossip channel when discard rate is 0.5. The re-

sult(Figure 2) shows a linear growth of latency with inter

log rate and stable average gossip message related to the

number of agents. The increasing of latency relates to the

size of condition logs. In the experiment, we assume condi-

tion log spending double space compare to other logs.

Figure 2: Average latency and gossip according to cross

operation rate when transactions terminate immediately.

The first picture shows the number of gossips is square to

the system’s scale. The second picture shows the system do

not accumulate gossips or latency as time goes by.

6. CONCLUSION

This work proposes a cooperation model for improving

scalability. Under the cooperation model, cross chain op-

eration can create externality of each agent and spread it

through gossip channel. The termination of one agent can

partly rely on other agents and agent can pay more atten-

tion to achieve agreements. On the other hand, cross chain

operation extends the ability of one agent and allow a more

flexible exchange between different digital assets. We can

still optimize this work in many ways. Condition log and

gossip message can be compressed to reduce latency and

burden of gossip channel. A gossip checking protocol can

detect forks faster. The future works will focus on the con-

sensus design under the cooperation model and optimiza-

tion of gossip channel and related protocols.

7. ACKNOWLEDGMENT

This work was funded by JSPS KAKENHI, JP16H01836,

JP16K12428, and industrial collaborators.

References

[Eyal 2017] Eyal I. Blockchain technology: Transform-

ing libertarian cryptocurrency dreams to finance and

banking realities[J]. Computer, 2017, 50(9): 38-49.

[Abeyratne 2016] Abeyratne S A, Monfared R P.

Blockchain ready manufacturing supply chain us-

ing distributed ledger[J]. 2016.

[Li 2018] Li M, Weng J, Yang A, et al. Crowdbc: A

blockchain-based decentralized framework for crowd-

sourcing[J]. IEEE Transactions on Parallel and Dis-

tributed Systems, 2018.

[Karame 2016] Karame G. On the security and scalabil-

ity of bitcoin’s blockchain[C]//Proceedings of the 2016

ACM SIGSAC Conference on Computer and Commu-

nications Security. ACM, 2016: 1861-1862.

[Back 2014] Back A, Corallo M, Dashjr L, et al.

Enabling blockchain innovations with pegged

sidechains[J]. URL: http://www. opensciencereview.

com/papers/123/enablingblockchain-innovations-

with-pegged-sidechains, 2014.

[Luu 2016] Luu L, Narayanan V, Zheng C, et

al. A secure sharding protocol for open

blockchains[C]//Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communica-

tions Security. ACM, 2016: 17-30

[Ren 2018] Ren Z, Cong K, Aerts T, et al. A scale-out

blockchain for value transfer with spontaneous shard-

ing[C]//2018 Crypto Valley Conference on Blockchain

Technology (CVCBT). IEEE, 2018: 1-10.

[Chen 2017] CHEN Z, Zhuo Y U, DUAN Z, et al. Inter-

Blockchain Communication[J]. DEStech Transactions

on Computer Science and Engineering, 2017 (cst).

[Kan 2018] Kan L, Wei Y, Muhammad A H, et al. A

Multiple Blockchains Architecture on Inter-Blockchain

Communication[C]//2018 IEEE International Confer-

ence on Software Quality, Reliability and Security

Companion (QRS-C). IEEE, 2018: 139-145.

[Zamani 2018] Zamani M, Movahedi M, Raykova M.

RapidChain: scaling blockchain via full shard-

ing[C]//Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security.

ACM, 2018: 931-948.

[Underwood 2016] Underwood S. Blockchain beyond bit-

coin[J]. Communications of the ACM, 2016, 59(11):

15-17.

4

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3H3-E-3-02

