機械学習による杭施工時のスライム検知 Slime detection during pile construction using machine learning

有坂 壮平^{*1} Sohei Arisaka 玉川 悠貴^{*1} Yuki Tamagawa 武居 幸次郎^{*1} Kojiro Takesue

*1 鹿島建設株式会社 Kajima Corporation

During pile construction, an inspection is needed to check absence of bottom slime which leads to settlement and inclination of structures. A conventional method for slime detection is dependent on individual judgement known by a sense of a hand. Therefore, there are some problems in terms of reproducibility and quantification. In order to solve these problems, we are studying a new method for slime detection using measured tension data. In this paper, we applied machine learning to judge whether slime exists or not from the tension data. Among 6 algorithms we compared, 1-dimendional Convolutional Neural Network achieved the best performance at 93% accuracy. According to this result, we verified that machine learning is effective for the slime detection.

1. 背景と目的

比較的規模の大きな構造物を支える杭の施工法として,場所 打ちコンクリート杭工法が広く用いられている.本工法の施工過 程で地盤を削孔する際には,孔壁が崩れないよう孔内を安定液 (泥水)で満たした状態を維持する.削孔過程で安定液中に混 入した土粒子が杭底に沈殿したものをスライム(図1)と呼んでお り,これを除去しなければ構造物の沈下や傾斜を招く恐れがあ る.そのため,スライムが除去できているか,確実に検知する必 要がある.

スライムの検知法として, 錘をロープに吊り下げ, 錘が杭底に 当たる際のロープの張力変化を手の感触で判定する方法が一 般に採用されている(写真 1,図 2)[田中 16]. この方法は人の 手の感触に頼っているため, 再現性, 定量化という点で課題が ある. そこで, 筆者らは手の動きをアクチュエータで再現し, ロー プの張力変化をロードセルで計測する, 新たなスライム検知法 (図 3)を考案し, 開発を進めている. 本報では, この方法で得ら れた張力データからスライムの有無を判定する方法として, 機械 学習の適用性を検証した結果を示す.

2. 対象データ

張力データの計測には、アクチュエータの先端にロードセル を取り付け、その先に錘を吊り下げたロープを取り付けた装置を 用いた. 杭底付近に錘を一旦降ろした後、アクチュエータで錘 を降下させ、錘が着底する前後のロープにかかる張力変化をロ ードセルで計測した. 降下速度は全て表 1 に示す条件となるよ うアクチュエータで制御した.

計測は同一の杭に対して連続した 10 回の降下によって得ら れる 10 波を1 計測としており、サンプリングレートは 100Hz, 1 波 あたりのサンプル点数は 180 点である. 今回利用する張力デー タは複数の工事現場で行った 120 計測, 1199 波(欠損データを 1 件除外)とする.

錘の着底時の速度条件を同一とするため,一定速度で降下 する表 1-②の範囲で錘が着底した場合を適正に計測できたも のとした.計測結果のラベルは、スライムが無い場合の「可」,有 る場合の「不可」,正しく計測できなかった場合の「再計測」の 3

連絡先:有坂壮平, 鹿島建設株式会社, 東京都調布市飛田給 2-19-1, 042-489-8259, arisakas@kajima.com 種とした.「可」と「不可」は,適正に計測できた波を,事前に行った熟練者の手による判定から分類した.「再計測」は,適正に 計測できなかった波を機械学習用データとして意図的に再現したものである.

図2 一般的なスライム検知法 図3 考案したスライム検知法

	表 1	降下速度の制御値	
	降下距離	経過時間	降下速度
	(mm)	(s)	(mm/s)
1	$0 \sim 50$	0.0~0.5	0→200
2	$50 \sim 290$	0.5~1.7	200
3	290~300	1.7~1.8	200→0

「可」,「不可」,「再計測」のデータ数は 370 波, 464 波, 365 波である.「可」と「不可」の典型的な波形の例を図 4-a, b に示 す.「可」の波形は張力が急激に低下しており,「不可」の波形 は緩やかに低下している. 図 4-c は, 錘が着底した状態から計 測開始した「再計測」の例で,最初から張力が低くなっている. 図 4-d は、「可」のうち特異な波形の波を含む例である.

3. 機械学習によるスライム検知

3.1 方法

計測値,またはそこから計算される特徴量を入力として,1波 に対して「可」、「不可」、「再計測」のラベルを出力する機械学 習モデルを構築した. アルゴリズムはロジスティック回帰(LR), サポートベクターマシン(SVM), ランダムフォレスト(RF), 勾配 ブースティング(GB), 全結合ニューラルネットワーク(MLP), 1 次元畳み込みニューラルネットワーク(1D-CNN) [Fawaz 18]の6 つを比較した.

モデルへの入力は、1次元畳み込みニューラルネットワーク については 180 点の全計測値とした. その他のアルゴリズムに ついては計測値, 差分系列, 累積和, 各種統計量, パワースペ クトル, ヒストグラム等により 159 の特徴量を作成し, 特徴量選択 ライブラリ Boruta [Kursa 10]で候補を絞った後, 交差検証内で 使用する特徴量を決定した.1次元畳み込みニューラルネットワ ークについては、学習時にガウスノイズを付加してデータ拡張を 行った.

データセットは 8:2 に分割し, 8 割を訓練データ, 2 割をテスト データとした. 各アルゴリズムのハイパーパラメータは訓練デー タ内で10分割交差検証法によって決定し、テストデータは最終 的な性能評価にのみ用いた. 前処理, 特徴量選択, データ拡 張を含むハイパーパラメータのチューニングは、全てハイパー パラメータ最適化ライブラリ Optuna によって行った. また, デー タ分割の際にはモデルの性能を適切に評価するため,同一計 測の 10 波が分割されず、ラベルの割合も均等になるよう分割し た. モデルの評価指標は正解率(Accuracy)とした.

3.2 結果

各アルゴリズムの性能を表 2 に示す. Training, Validation, Test は各交差検証で作成したモデルの訓練データ,検証デー

タ, テストデータでの正解率の平均, 表中括弧内は標準偏差で ある. Test(Ensemble)は各交差検証で作成したモデルをアンサ ンブルした場合のテストデータでの正解率である.

最も性能の良かった1次元畳み込みニューラルネットワークと, 特徴量ベースの手法で最も性能の良かったサポートベクターマ シンの混同行列を図 5-a, b に示す. 括弧内は実数である.

最適化された 1 次元畳み込みニューラルネットワークの構造 を図6に示す.活性化関数はReLU, 畳み込み層のカーネルサ イズは上から3,6,6,ドロップアウト率は0.27である.

また、特徴量ベースの手法では、交差検証によって概ね 50 前後の特徴量が選択された. ランダムフォレスト, 勾配ブーステ ィングでの特徴量重要度上位 10 個を図 7-a, b に示す.

表2 各アルゴリズムの性能						
Algorithm	Training	Validation	Test	Test		
				(Ensemble)		
LR	0.941	0.896	0.847	0.858		
	(0.008)	(0.078)	(0.018)			
SVM	0.954	0.892	0.876	0.879		
	(0.009)	(0.071)	(0.023)			
RF	0.966	0.909	0.858	0.875		
	(0.008)	(0.078)	(0.016)			
GB	0.998	0.884	0.852	0.871		
	(0.002)	(0.080)	(0.026)			
MLP	0.971	0.874	0.821	0.858		
	(0.010)	(0.080)	(0.047)			
1D-CNN	0.944	0.937	0.892	0.929		
	(0.029)	(0.065)	(0.060)			

b. SVM

3.3 考察

今回の検証では1次元畳み込みニューラルネットワークが最 も性能が良く、データの特徴をよく捉えることができた.また、全 結合ニューラルネットワーク、1次元畳み込みニューラルネットワ ークとも、他のモデルに比べてアンサンブルによる性能向上が 大きくなった.これは作成されたモデルに多様性があることに起 因すると思われる.本検証では原系列のみを1チャネルで入力 したが、差分系列や累積和を合わせて入力することも有効と思 われる.

表2から,全体として訓練データと検証データのスコアに大き く差があり,モデルのバリアンスが大きいことが分かる.1次元畳 み込みニューラルネットワークでは差が小さくなっているが,これ は訓練データでのスコアがデータ拡張によるノイズ込みの性能 であること,各交差検証で検証スコアが最大となるエポックを選 択していることが理由であり,学習曲線を見るとやはり過学習の 傾向があった.このことから,同様のモデルでも学習データ数を 増やすことで性能向上が期待できる.

また,検証データとテストデータでのスコアを比べると,テスト データでは一様に性能が低下している.これは検証データとテ ストデータの分布が異なるためと思われる.また,交差検証内で も他の検証セットと比較して必ずスコアが低くなるものが存在し た.ラベルで層化分割を行っているが,同一計測が分割されな いようにしているために、データが偏りやすくなっているものと考 えられる. 適切な評価、学習のため、計測現場を考慮するなど 分割方法をさらに検討すること、より多くのデータを使用すること が必要である.

図5の混同行列を見ると、1次元畳み込みニューラルネットワークは「再計測」の再現率が高い、サポートベクターマシンは「可」の再現率が高い等、モデルによって出力の傾向が異なることが分かる。全体の正解率では1次元畳み込みニューラルネットワークの性能が最も良かったが、傾向の異なる特徴量ベースのモデルをアンサンブルすることも有効であると思われる。

特徴量ベースの手法では、図 7 から分かるようにヒストグラム に基づく特徴量がよく効いている.この特徴量はある区間に入 るデータの点数を表しており、波形の形状を反映している.スラ イムが無い場合には急激に低下し、有る場合には緩やかに低 下する張力変化の様子が捉えられているものと考えられる.

4. まとめと今後の展望

考案した方法で計測した張力データからスライムの有無を判定する機械学習モデルを構築し、適用性について検証した.比較した6種のアルゴリズムでは1次元畳み込みニューラルネットワークが最も性能が良く、その正解率はテストデータで約93%であった.これにより、スライム検知における機械学習の有効性が確認できた.

今後も多くの工事現場のデータを収集することで,機械学習 モデルの精度を向上させ,スライムの有無をより高精度に判定 できる方法の開発を目指す.

参考文献

- [田中 16] 田中 昌史: スライム処理方法とスライム量の関係, 基 礎工 2016年3月号, 総合土木研究所, 2016.
- [Fawaz 18] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, Pierre-Alain Muller: Deep learning for time series classification: a review, arXiv:1809.04356, 2018.
- [Kursa 10] Miron B. Kursa, Witold R. Rudnicki: Feature Selection with the Boruta Package Journal of Statistical Software, Vol. 36, Issue 11, 2010.