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We studied applicability of Variational Autoencoder (VAE) to capture stochastic nature of pedestrian moves in a public
space without explicit labels. Movies for training the network were recorded in a public pedestrian street and an exhibition
booth. These movies were converted to grayscale images representing observed pedestrian locations and occupied areas.
VAE was trained on 90% of data and rest of data was kept for validation. The validation result showed satisfactory
reconstruction performance of pedestrian distributions in video frames. We propose a novel method to render our expectation
of finding a pedestrian in a crowd as 2-D images by utilizing the trained network. Images rendered by this method correspond

to subjective images usually only captured in our mind.

1. Introduction

Building reliable traffic system requires a realistic description
of pedestrian behaviors. For example, one of challenges in
advanced safety system developments is to find rare but
important corner cases, which are likely to be traced back to a
subtle but non-negligible pedestrian behavior.

Pedestrian behaviors in a public space are explained by logical
relationships and stochastic factors. A logical relationship of
pedestrian trajectories is studied for years and various types of
models are proposed to analyze universal traffic phenomena.
Those models include Social force model, Optimal velocity
model, Car-following model, and Cellular Automaton (CA)
based model.

The stochastic and statistic nature of pedestrian behaviors is
likely to be influenced by individual experiences, subjective
recognitions of regional trends, or expectations in mind. For
example, there can be a trend to yield right side in a public space
in a certain region when two pedestrians are passing each other.
Although such stochasticity can be taken into account by
assuming a probability distribution and parameters, is it possible
to learn the probability distribution directly from pedestrian data?

In the meantime, we occasionally recognize certain patterns
while we stare at pedestrians in a public crowd. This is a
subjective process of building expectations to pedestrian moves.
These expectations give intuitive motive for a pedestrian to
decide behaviors in a crowd. To take this into account in a
pedestrian modeling, is it possible to mimic this subjective
process by unsupervised learning on pedestrian data?

For these backgrounds, our goal is twofold: firstly study
applicability of unsupervised machine learning to capture
stochastic aspect of pedestrian behaviors, and secondly render
learned content as a representation of our expectations to find an
individual in a crowd. In the following sections, we propose a
method to learn pedestrian distribution in a public space using
VAE [Kingma 2014].
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2. Learning pedestrian trajectories

2.1 Data Preprocessing

Our focus is to train a network on pedestrian locations and
occupied areas. For this purpose, training data is prepared in the
following process.

Pedestrian movies are recorded at 30 FPS by a single eye
camera mounted at a fixed location with a certain elevation angle
to a floor of pedestrian traffic. Movies are recorded at two
different locations by this setup: movies recorded at a public
pedestrian street have approximately 90 second length (Street
data, hereafter). Movies recorded at an exhibition booth have
approximately 30 minutes length (Booth data, hereafter).

For each frame in these movies, we applied YOLO v3
[Redmon 2015] to detect pedestrians and selected middle points
of lower bases of detected bounding boxes as approximated
pedestrian positions. Pedestrian positions are transformed to
positions in a 2-D rectangular area while keeping the aspect ratio
same as the original area. The resulted view is corresponding to a
perspective perpendicular to the floor. Based on these pedestrian
positions we generate grayscale images with white circles
represent areas occupied by pedestrians on a black rectangular
background. These images are resized to 10% in size of the
original images by using INTER AREA algorithm in OpenCV.
Pixels in an image take value from 0 to 255. These images are
fed as inputs to train the VAE network (Figure 3).

2.2 VAE network

VAE network structure is shown in Figure 1. We assume the
latent distribution to follow a Gaussian distribution [Doersch
2016]. A loss function is defined as the following form:

(M

, where first term represents a KL divergence regularization and
second term represent a reconstruction error. As an explicit form
of the reconstruction term, a mean-squared error function is
chosen:

L(x) = =D, (ap @l0)1Ip(2)) + Eg, (21 [l0g P (x12)]
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MSE =%Z(x—x’)2 )

, where x is input data and x' is reconstructed data, and the
summation runs over all n data points in x.

Once the network is trained properly, the reconstruction cost
quantifies a distance between training data and an input fed to the
trained network. When the input is not alike the training dataset,
the reconstruction cost gives a high value. Using this
reconstruction cost, we define a likelihood of x as follows:

MSE — min(MSE)
fx)=1- max(MSE) — min(MSE) A)

, where f(x) takes values from zero to one and higher value
means a higher likelihood for a given x.
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Figure 1 — VAE network overview: Input and Output layers
have a same dimension as an input image. Two intermediate
dimensions and latent dimension are 1000, 300 and 100,
respectively. The rectified linear unit (ReLU) is used as the
output activation.

2.3 Training results

VAE was successfully trained on Street data and Booth data
(Figure 2) and demonstrated satisfactory reconstruction
performance (Figure 3). However, a rate of training loss vs
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Figure 2 — Example of loss change during a training: Training

loss (Orange) and validation loss (Blue) change during training
on Street dataset for 700 epochs.

validation loss shows different trends for Street data and Booth
data: the rate is about 20% for Street data, while it is about 5%
for Booth data. This will be discussed in Section 3.1.

The trained VAE network recovers an original input from an
incomplete input, in which some circles are removed from the
original input as shown in Figure 3. In Figure 3, the
reconstruction seems to be performing well considering 20% of
gap between training and validation error for Street data. This
can be interpreted as that the training on image pixel values is
suitable for the current network and we are complementing the
reconstructed image in our mind.
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Figure 3 — Street Data Reconstruction by the trained network:
a) Original input not exposed during the training, b) Reconstructed
image by VAE, c) Modified input by removing three points from
the original input, and d) Reconstruction of the modified input by
VAE

3. Analysis

3.1 Generalization capabilities

The difference in the rate of training loss vs validation loss
represents a generalization capability of the trained network.
First, Booth data have longer duration than Street data and a
longer training data have an advantage for generalization. Second,
pedestrians in Street data are constantly and randomly moving in
the view. In contrast, people in Booth data sometimes stop and
see at specific locations in the view. Thus, the Booth data have
advantages over Street data in regard to generalization and this
resulted in the smaller difference in the training and validation
loss.

Although the network is not over-fitted (Figure 2), the cost
function after training is highly sensitive to similarity of an input
data to the training dataset. If a training input is slightly shifted
before reconstruction by the trained network, the network tends
to recover the original input by canceling out the amount of shift.
In other words, the VAE network learned the pedestrian
distribution specific to the training dataset and it tries to interpret
any input by learned patterns.

This generalization capability will be improved by preparing
larger dataset and data augmentation.
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Figure 4 — Likelihood distribution over 2-D area: images are
ordered in time sequence from left to right. Color shows
likelihood of finding an individual in this area.

3.2 Likelihood distribution on expected trajectories

When an input x is fed to the trained VAE and reconstructed,
likelihood of x can be estimated by f(x). To estimate
expectation to find an individual within a crowd, first one
specific circle in a frame is selected and removed to create a base
input xy. Then, we put a new circle on x to generate a new test
input x, . By evaluating f(x;), one can estimate a likelihood
of x;, which is a quantified expectation to find the removed
individual at the position where the new circle is placed.

By repeating this process while moving a new circle over the
area of xy, one can estimate a likelihood distribution over 2-D
area. Images generated via this procedure are presented in Figure
4. These images can be seen as our expectation for a pedestrian
location when other pedestrians are distributed as x,

By processing multiple frames in sequence, one can estimate
an expected trajectory of an individual based on observations
(Figure 4).

In the process described above, only one circle is removed and
the likelihood distribution is estimated. The same process is
applicable when removing a cluster of circles to generate x, and
putting a new area, which is not necessary to be a circle, to
create x,. In this case, the resulted 2-D likelihood distribution
means our expectation to find a cluster of people around the area
instead of an individual. This can be regarded as our ‘soft-
focused’ expectation over a crowd.

4. Conclusion

In the present study, we discussed unsupervised training of
VAE on pedestrian traffic data. Since our focus was training the
network only by pedestrian positions and occupied areas in a
public space, movies for training are preprocessed to generate
input images representing only these features. As a result, the
training was made computationally less intensive and VAE
network was successfully trained with relatively small amount of
data.

The trained VAE captures features of a pedestrian distribution
in a frame and it is utilized to render our expectation to the
trajectory of an individual in a crowd. Images rendered by this
method correspond to subjective images usually only captured in
our mind.

Our goal is to capture stochastic aspect of pedestrian behaviors
in a crowd by machine learning. In the present study, outcomes
of our first attempts to embody this concept are reported. Further
analysis is required to achieve an appropriate level of a
generalization capability. In addition, the current method is based
only on an instantaneous pedestrian distribution, and does not
take into account temporal correlations. Deep neural network
based models are applied to predict pedestrian trajectories, and
prediction performance of various architecture is compared in a
recent study [Becker 2018]. These are areas to extend the present
study.
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