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Deep neural networks are utilized in various applications in real worlds, thanks to their capabilities. One of
the fashions of it is their deployment on edge devices. With edge devices, deep neural networks can be used in
the context of IoT. However, the specification of those edge devices is often poor so that deep neural networks
cannot be deployed. Binary neural networks, whose weights and activations are binarized, is one of the solutions.
There is a well-known issue, the drastic drop in accuracy compared to its full precision networks. We consider that
this is because the binary neural networks can only represent a subset of discrete functions so that they become
sensitive to the input perturbation: the lack of robustness for inputs. In this paper, we propose a regularization
approach that helps to alleviate the over-fitting problem by introducing variational information bottleneck. We
show ablation studies on CIFAR-10 that reduce loss value the though accuracy is maintained on AlexNet-like
networks with different binary activation functions.
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