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The goal of zero-shot learning is to recognize a novel class that did not appear in training. In this talk, we
introduce a novel approach to zero-shot learning. Our approach reuses in-service predictors which are often available
in practice. Unlike most of the existing methods, our method does not require to replace in-service predictors with
new predictors specifically designed for zero-shot learning.
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2.1
d x ∈ R

d

y ∈ Y t

f (t) : Rd → R x′

ŷ = argmaxt′∈Y f (t′)(x′)

YS = {1, . . . , kS} YU = {kS + 1, . . . , kS + kU}
kS kU

YS ∪ YU = Y YS ∩ YU = ∅
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2.2

[1].

t m a(t) ∈ R
m

AS := {a(t)}kS
t=1 AU := {a(t′)}kS+kU

t′=kS+1

G(x,a) : Rd × R
m → R

G a(t)

ga(t)(x) := G(x,a(t)) t

f (t)(x) ≈ ga(t)(x)

ga(t)

ŷ = argmax
t′∈YS∪YU

g
a(t′)(x

′)

2.3

{h(t) : Rd → R}kS
t=1

{h(t)}kS
t=1
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4.1
[3]

d = 10, m = 20, n(t) = 50, kU = 100

LR

SVC
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4.2
4

Attribute Pascal

and Yahoo (aPY) [7], Animals with Attributes (AWA) [1],

Caltech-UCSD-Birds 200-2011 (CUB) [8], SUN [9]

101 ResNet [10]

2048 [6]

1 Top-1

1: kS
5

1: Top-1 [6]

aPY AWA SUN CUB

ALE [2] 39.7 59.9 58.1 54.9

ESZSL [3] 38.3 58.2 54.5 53.9

SynC [4] 23.9 54.0 56.3 55.6

LatEm [5] 35.2 55.1 55.3 49.3

38.7 54.5 55.4 53.4
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