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Fairness in machine learning is an emerging topic in recent years. In this paper, we propose a post-processing
method for editing a given decision tree to be fair according to a specified discrimination criterion by modifying its
branching thresholds in internal nodes. We propose a mixed integer linear programming (MIP) formulation for the
problem, which can deal with several other constraints flexibly and can be solved efficiently by any existing solver.
By experiments, we confirm the effectiveness of our approach by comparing existing post-processing methods.

1. Introduction

Background and Motivation In the application of ma-

chine learning models to the actual decision making, prob-

lems other than their prediction accuracy, such as inter-

pretability [10] and fairness [7], attract increasing attention.

If their prediction results are unexplainable or discrimina-

tive, they are no longer usable in the actual decision making,

even if they achieve high accuracy.

In this paper, we focus on decision tree models [4], and

study a post-processing method [7] for decision trees. More

specifically, we consider a problem of editing a decision tree

by modifying its branching thresholds in internal nodes

so as to satisfy fairness constraints w.r.t. a sensitive at-

tribute such as gender and race, named re-thresholding

problem. We formulate it as a mixed integer linear pro-

gramming (MIP) problem, which we can obtain an optimal

solution by powerful off-the-shelf solvers such as CPLEX∗1

and Gurobi∗2. Our approach has the following advantages:

• Interpretability: Decision tree models are known as

one of the interpretable machine learning models since

their predictions are based on a set of rules that human

can understand easily [10, 11].

• Adaptivity: Post-processing methods can deal with

the situation that a sensitive attribute or fairness cri-

terion is given after learning [6, 7, 9]. In the actual

decision making, they are not always given in advance.

• Flexibility: Our MIP formulation can deal with addi-

tional constraints defined by users without implement-

ing designated algorithms, if these constraints can be

expressed as linear equations or inequalities [2, 3, 11].

Contribution Our contributions are as follows:

1. We formulate a post-processing problem of editing

a given decision tree so as to satisfy fairness con-

straints by modifying its branching thresholds, named

re-thresholding problem, as an MIP problem.

Contact: kanamori@ist.hokudai.ac.jp
∗1 https://www.ibm.com/analytics/cplex-optimizer

∗2 http://www.gurobi.com/

2. We formulate an edit distance [12] of a decision tree

to measure dissimilarity between given and modified

decision trees as edit limitation constraints.

3. By experiments on real datasets, we confirm the effec-

tiveness of our proposed method by comparing other

existing post-processing methods.

2. Preliminary

2.1 Notation
For n ∈ N, we denote by [n] = {1, . . . , n}. For a proposi-

tion ψ, I [ψ] denotes the indicator of ψ, i.e., I [ψ] = 1 if ψ is

true, and I [ψ] = 0 if ψ is false.

In this paper, we consider a binary classification prob-

lem, and assume its input space is normalized to [0, 1]D

without loss of generality. Let a pair of an input and

an output (x, y) ∈ [0, 1]D × {0, 1} be an example, and

S = {(x(j), y(j))}Nj=1 be a dataset with N examples. For

a prediction model h : [0, 1]D → {0, 1}, the empirical loss

on S is defined by L(h | S) := 1
N

∑N
j=1 I

[
h(x(j)) �= y(j)

]
.

In addition, we consider a sensitive attribute z ∈ {0, 1},
such as gender and race. Let z(j) be the sensitive at-

tribute value w.r.t. j-th example (x(j), y(j)) ∈ S, and

Z = {z(j)}Nj=1 be the set of its values w.r.t. S.

2.2 Decision trees
The decision tree [4] is a prediction model that consists of

a set of prediction rules expressed by the full binary ordered

tree structure. It makes the prediction according to the

label of the leaf node that the input x reaches, and the

corresponding leaf node is determined by traversing the tree

from the root. Each internal node has a pair of parameters

(d, b) ∈ [D] × [0, 1], where d is a branching feature and b

is a branching threshold, and the input x = (x1, . . . , xD) is

directed to one of two child nodes depending on whether

the statement xd ≤ b is true or not.

Then, the decision tree can be expressed as follows:

h(x) =

K∑
k=1

lk
∏

m∈a
(L)
k

I [xdm ≤ bm]
∏

m∈a
(R)
k

I [xdm > bm] ,

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

3Rin2-11



x2 ≤ 0.7 x2 > 0.7

x2 > 0.4x2 ≤ 0.4

x1 ≤ 0.8 x1 > 0.8

l2

l1

l4

l3

1

2

3
x1

x2

0.7

0.4

0.8

r2

r1

r3

r4

Figure 1: An illustration of a decision tree. For 2-nd leaf

node, a
(L)
2 = {1, 3} a

(R)
2 = {2}, and its corresponding re-

gion r2 = (−∞, 0.8]× (0.4, 0.7].

where K ∈ N is the total number of leaf nodes, lk ∈ {0, 1}
is a predictive label of k-th leaf node, (dm, bm) ∈ [D]× [0, 1]

is a branching rule in m-th internal node, and a
(L)
k (a

(R)
k ) ⊆

[K−1] is a set of left(right)-branching internal node indexes

on the pass from the root node to k-th leaf node. Note

that a decision tree with K leaf nodes has K − 1 internal

nodes since it is expressed as the full binary ordered tree

structure. We denote a region corresponding to k-th leaf

node by rk ⊆ [0, 1]D. Then, a set of the regions {rk}Kk=1

expresses a partition of the input space. Figure 1 illustrates

an example of a decision tree.

We denote a set of all possible decision trees by H. In this

paper, since we consider the problem of modifying branch-

ing thresholds B := (b1, . . . , bK−1) ∈ [0, 1]K−1 of a given

decision tree, we denote a decision tree with B by hB ∈ H.

2.3 Discrimination scores
We use two major criteria named demographic par-

ity(DP) [5] and equal opportunity(EO) [8] to evaluate the

discrimination of the model. We denote an empirical prob-

ability on a dataset S and sensitive attribute Z by P̂ .

Definition 1 (DP score) DP score of a model h on a

dataset S w.r.t. a sensitive attribute Z is defined by

δDP(h | S,Z) := |P̂ (h(x) = 1 | z = 1)

− P̂ (h(x) = 1 | z = 0)|.

Definition 2 (EO score) EO score of a model h on a

dataset S w.r.t. a sensitive attribute Z is defined by

δEO(h | S,Z) := |P̂ (h(x) = 1 | y = 1, z = 1)

− P̂ (h(x) = 1 | y = 1, z = 0)|.

In this paper, we call DP and EO scores discrimination

score together. These values approach 1 as the model h

tends to make the predictions unfairly for z, while they

approach 0 if the model makes the predictions fairly.

2.4 Problem formulation
Here, we define our problem named re-thresholding prob-

lem. We assume that a decision tree hB with branching

thresholds B is already given, and the goal is to reduce

the discrimination score on a given dataset S by modify-

ing branching thresholds in B without changing the given

decision tree significantly.

Problem 1 (Re-thresholding) Given a dataset S, sen-

sitive attribute Z, decision tree hB with branching thresholds

B = (b1, . . . , bK−1), discrimination score disc ∈ {DP,EO},
discrimination threshold t ∈ [0, 1], dissimilarity measure of

decision trees Δ : H × H → R≥0, and parameters λ ≥ 0

and Nminsup ∈ [|S|], re-thresholding problem is defined as

follows:

minimize
θ∈[0,1]K−1

L(hθ | S) + λ ·Δ(hB , hθ)

subject to δdisc(hθ | S,Z) ≤ t

∀k ∈ [K] : |{(x, y) ∈ S | x ∈ rk}| ≥ Nminsup

Note that we modify only branching thresholds, and do

not modify branching features and predictive labels in leaf

nodes. As a dissimilarity measure of decision trees Δ in

Problem 1, we propose an edit distance of a decision tree

ΔED, which will be defined in the next section.

3. Proposed Method

Our formulation is based on OCT, the MIP framework for

learning optimal classification trees proposed by Bertsimas

and Dunn [3]. In order to adapt it to our editing problem

for decision trees, we formulate an edit distance of decision

trees and fairness constraints.

3.1 Program variables
For m ∈ [K − 1], j ∈ [N ], k ∈ [K], we introduce some

variables for formulating Problem 1 as follows:

• θm ∈ [0, 1] is a modified branching threshold in m-th

internal node.

• φj,k ∈ {0, 1} indicates whether j-th input x(j) reaches

k-th leaf node, i.e., φj,k = I

[
x(j) ∈ rk

]
.

• ψk ∈ {0, 1} indicates whether some example reaches

k-th leaf node, i.e., ψk = I

[
∃j ∈ [N ] : x(j) ∈ rk

]
.

• ε
(L)
m (ε

(R)
m ) ∈ {0, 1} indicates whether no example

reaches leaf nodes in the left (right) subtree of m-

th internal node c
(L)
m (c

(R)
m ) ⊆ [K], i.e., ε

(L)
m =

I

[
∀k ∈ c

(L)
m : ψk = 0

] (
ε
(R)
m = I

[
∀k ∈ c

(R)
m : ψk = 0

])
.

• ξm ∈ [0, 2] expresses the cost corresponding to edit

operations for m-th internal node.

φj,k, ψk, ε
(L)
m , ε

(R)
m and ξm are auxiliary variables. The total

number of the variables is O(NK).

3.2 Edit distance of decision trees
We define an edit distance of a decision tree based on the

standard tree edit distance [12]. For two ordered trees T

and T ′, the tree edit distance between them is defined as

the minimal length of the sequence of editing operations to

transform T into T ′. Available edit operations are insertion,

deletion, and relabeling.

In our problem, an explicit edit operation is relabeling

threshold values in internal nodes. We define |bm − θm| ∈

2
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Figure 2: An example of deleting and relabeling operations.

If no example reaches leaf nodes in the right subtree of m-th

internal node (ε
(R)
m = 1), m-th internal node and its right

subtree are deleted from the tree, and the total number

of these edit operations are measured as an edit distance.

Otherwise (ε
(R)
m = 0), |bm − θm| occurs as a cost for the

relabeling operation.

[0, 1] as the cost of the relabeling operation for m-th inter-

nal node. However, when a modified branching threshold

exceeds a specific value, no examples in S reaches its child

leaf node, which is denoted by ψk = 0. By deletion of all

leaf nodes with ψk = 0 and their parent internal nodes in

the decision tree hθ, we can obtain a unique tree structure

whose prediction results on S are equivalent to hθ.

Then, we define our edit distance ΔED between hθ and hB

by the total number of these delete operations and relabel-

ing costs. For m-th internal node, if no example reaches leaf

nodes in its left or right subtree, i.e., ε
(L)
m = 1 or ε

(R)
m = 1,

the editing cost ξm is 2 because m-th internal node and

its subtree are deleted. Note that if ε
(L)
m = 1 (ε

(R)
m = 1),

ξm′ = 2 holds for any m′-th internal nodes included in left

(right) subtree of m-th internal node because ψk = 0 for

any k ∈ c
(L)

m′ (c
(R)

m′ ) and ε
(L)

m′ = 1 or ε
(R)

m′ = 1 hold, and sum

of these ξm′ is equivalent to the cost of delete operations

for the subtree. It can be expressed as follows:

ΔED(hB , hθ) =

K−1∑
m=1

max{|bm − θm|, 2ε(L)
m , 2ε(R)

m }.

Figure 2 shows an example of edit operations in our prob-

lem. By using ξm, ψm, ε
(L)
m , and ε

(R)
m , it can be expressed

as a linear function and constraints.

3.3 Fairness constraints
We can express both DP and EO scores by using variables

φj,k as follows:

δdisc(hθ | S,Z) =

K∑
k=1

lk

N∑
j=1

d
(disc)
j,k φj,k.

d
(disc)
j,k is a constant value determined automatically when

S and Z are given such that

d
(disc)
j,k =

⎧⎪⎨
⎪⎩

z(j)

|S(DP)
1 |

− 1−z(j)

|S(DP)
0 |

(disc = DP),

y(j)z(j)

|S(EO)
1 |

− y(j)(1−z(j))

|S(EO)
0 |

(disc = EO),

where S
(DP)
z := {(x(j), y(j)) ∈ S | z(j) = z} and S

(EO)
z :=

{(x(j), y(j)) ∈ S | y(j) = 1 ∧ z(j) = z} for z ∈ {0, 1}.

3.4 Overall formulation
Now, we can formulate Problem 1 as the following MIP

problem:

minimize
1

N

K∑
k=1

N∑
j=1

cj,kφj,k + λ

K−1∑
m=1

ξm (1)

subject to
K∑

k=1

φj,k = 1, ∀j ∈ [N ] (2)

φj,k ≤ ψk, ∀k ∈ [K], j ∈ [N ] (3)

N∑
j=1

φj,k ≥ Nminsup · ψk, ∀k ∈ [K] (4)

x
(j)
dm

≤ θm + (1− φj,k),

∀k ∈ [K], j ∈ [N ],m ∈ a
(L)
k (5)

x
(j)
dm

− em ≥ θm − (1 + emax)(1− φj,k),

∀k ∈ [K], j ∈ [N ],m ∈ a
(R)
k (6)

− ξm ≤ bm − θm, ∀m ∈ [K − 1] (7)

bm − θm ≤ ξm, ∀m ∈ [K − 1] (8)

ξm ≥ 2ε(L)
m , ∀m ∈ [K − 1] (9)

ξm ≥ 2ε(R)
m , ∀m ∈ [K − 1] (10)

1− ε(L)
m ≤

∑

k∈c
(L)
m

ψk, ∀m ∈ [K − 1] (11)

∑

k∈c
(L)
m

ψk ≤ (1− ε(L)
m )|c(L)

m |, ∀m ∈ [K − 1] (12)

1− ε(R)
m ≤

∑

k∈c
(R)
m

ψk, ∀m ∈ [K − 1] (13)

∑

k∈c
(R)
m

ψk ≤ (1− ε(R)
m )|c(R)

m |, ∀m ∈ [K − 1] (14)

K∑
k=1

lk

N∑
j=1

d
(disc)
j,k φj,k ≤ t (15)

−
K∑

k=1

lk

N∑
j=1

d
(disc)
j,k φj,k ≤ t (16)

where em = min{|x(i)
dm

− x
(j)
dm

| | i, j ∈ [N ], x
(i)
dm

�= x
(j)
dm

},
emax = max{em}K−1

m=1, and cj,k := lk(1 − y(j)) + (1 −
lk)y

(j). We can express L(hθ | S) and ΔED(hB , hθ) by∑K
k=1

∑N
j=1 cj,kφj,k and

∑K−1
m=1 ξm, respectively. Equation

(2) and inequalities (3-6) are the same constraints with

OCT [3]. Inequalities (7-15) and (16,17) are constraints

for expressing our edit distance ΔED(hB , hθ) and fairness

constraint δdisc(hθ | S,Z) ≤ t.

4. Experiments

Experimental setup We used theCOMPAS dataset [1].

It has N = 6172 examples and the total number of features

is D = 9. Its output label y(j) ∈ {0, 1} indicates whether j-

th person recidivates within two years. We use the attribute

”African American” as its sensitive attribute z(j) ∈ {0, 1}.
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Table 1: Experimental results averaged over 5 trials. ”Loss” anf ”DP” denote the average empirical loss with its standard

deviation and DP score for training and test datasets. ”time” denotes the average running times.

Training Test

method Loss DP Loss DP time[s]

NB-Modified 0.387 ± 0.022 0.103 0.384 ± 0.005 0.118 2.028

Relabeling 0.412 ± 0.018 0.044 0.412 ± 0.028 0.063 0.704 ×10−4

MIP (proposed) 0.396 ± 0.011 0.095 0.389 ± 0.012 0.112 316.72

We compared our method (MIP) with the existing

two post-processing methods: (1) modifying naive Bayes

(NB-Modified) [6] , and (2) relabeling for decision trees

(Relabeling) [9]. In our experiments, we randomly split

the dataset into training (50%) and test (50%) datasets,

and report the average statistics over 5 trials. We obtained

initial prediction models and applied each methods by using

training datasets. Decision trees were learned by CART [4]

with the constraint on these height less than 3. We used

the threshold value of the fairness constraint t = 0.1 for all

methods, and λ = 0.1 and Nminsup = 100 for Problem 1. All

codes were implemented in Python 3.6 with scikit-learn∗3

and IBM ILOG CPLEX Optimization Studio v12.8. All ex-

periments were conducted on 64-bit macOS Sierra 10.12.6

with Intel Core i5 2.90GHz CPU and 8GB Memory.

Experimental results Table 1 shows the experimental

results for DP scores. The DP scores of naive Bayes and

decision trees before modification were 0.462 and 0.226, re-

spectively. Our method maintained slightly lower loss than

the relabeling method for decision trees on both training

and test datasets, and comparable accuracy with the mod-

ifying naive Bayes method. We note that the average DP

score attained by the modifying naive Bayes method ex-

ceeds t = 0.1 since it sometimes failed to obtain a model sat-

isfying the fairness constraint. On the other hands, the run-

ning time of our method was longer than other two meth-

ods. This result implies that we need to improve our for-

mulation, e.g., reducing program variables and constraints.

5. Conclusion and Discussion

We studied a fairness-aware post-processing method for

decision trees, and proposed an MIP formulation of the re-

thresholding problem, which makes a given decision tree fair

by modifying their branching thresholds. Also, we formu-

late an edit distance of a decision tree so as to avoid that a

learned model is changed significantly. By experiments on

real datasets, we confirmed the effectiveness of our methods

by comparing with the existing post-processing methods.

As future work, we will try to extend our framework so

as to modify branching features, and deal with user-defined

constraints more flexibly. It is important that maintaining

user’s prior knowledge contained in the model, e.g., order

of branching features on a pass from its root node to a leaf

node, while improving fairness by editing operations.
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