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Transportation services under which multiple traffic mode services are provided by a service operator through
mobile apps are often called Mobility as a Service (MaaS). Commonly, the mobile app has the function of activity
loggers, which represents the heterogeneity of each user. Thus, the traffic allocations and pricing algorithms that
properly handle this heterogeneity of users is required. In this paper, we present a conceptual framework for the
pricing mechanisms for such dynamic on-demand traffic services.

Specifically, we aim to establish Bayesian-Nash incentive compatible mechanisms, by which the dynamic system
optimal state is achieved by the best response strategy of selfish agents. We introduce two common mechanisms to
our MaaS settings, one which guarantees non-negative ex-post revenue and the other non-negative ex-post utility
of agents. In the numerical study, we show that these two mechanisms have a trade-off between the revenue of the
service operator and the benefit of customers.
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1: Sample network

Dynamic pivot mechanism
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