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Dialogue act is known as an essential component of the dialogue system, which captures the user’s intention
and produces the appropriate response. In this paper, we propose a controllable response generation model given
dialogue acts. Recent neural conversation models are based on the end-to-end approach that learns a mapping
a mapping between dialogue histories and response utterances. However, it was difficult to control the contents
of the response generated by the model. Several models tackled the problem of generating responses under the
specified dialogue acts as a condition; however, these models still have problems on conditioned generations. In this
paper, we introduced an extended framework of the generative adversarial network that optimizes both conditioned
generator and discriminator which explicitly classifies dialogue act classes. Experimental results showed that our
conditional response generation model improved both the response quality and controllability of neural conversation
generation.
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1: NCM
Perplexity Average Greedy Extreme Distinct-1 Distinct-2 Accuracy

NCM (greedy) 36.6614 0.7912 5.5075 0.5298 0.0336 0.0160 0.8644
Adversarial-Implicit (greedy) 39.2864 0.7882 5.6239 0.5394 0.0297 0.0069 0.8585
Adversarial-Explicit (greedy) 39.6993 0.7867 5.6661 0.5395 0.0311 0.0010 0.8843

NCM (sampling) 36.6614 0.7917 5.1785 0.4905 0.0767 0.2650 0.8176
Adversarial-Implicit (sampling) 39.2864 0.7870 5.2566 0.5035 0.0594 0.2093 0.8062
Adversarial-Explicit (sampling) 39.6993 0.7865 5.2782 0.5041 0.0583 0.1186 0.8573

NCM (beam) 36.6614 0.7847 5.5680 0.5381 0.0325 0.0006 0.8707
Adversarial-Implicit (beam) 39.2864 0.7793 5.6668 0.5411 0.0267 0.0031 0.8615
Adversarial-Explicit (beam) 39.6993 0.7796 5.7167 0.5431 0.0274 0.0017 0.8865
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4

(11,118 ) (1,000 )

(1,000 )

NCM 2,5000

“UNK”

Li [Li 17a]

D-step G-step 4 20

batch size 32 Disciriminato

SGD ( 1e-3) Generator Adam (

1e-5) ∗3

Algorithm 1
1: for number of iteration do
2: for number of D-step do
3: sample (M,R, d) from training data

4: generate response R̂ using G on (M,d)

5: update D using (M, R̂, d) and (M,R, d)

6: for number of G-step do
7: sample (M,R, d) from training data

8: generate response R̂ using G on (M,d)

9: compute reward r for (M, R̂, d) using D

10: update G on(M, R̂, d) using r
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2: (beam search)
Precision Recall F1

Inform 0.8855 0.9231 0.9039 (+0.0125)
Questions 0.9699 0.9976 0.9836 (+0.0060)
Directives 0.9263 0.6695 0.7772 (+0.0622)

Commisive 0.5976 0.7211 0.6536 (+0.0187)

Macro Avg 0.8448 0.8278 0.8296 (+0.0249)
Weighted Avg 0.8926 0.8864 0.8854 (+0.0111)

3: (sampling)
Precision Recall F1

Inform 0.8766 0.9075 0.8918 (+0.0256)
Questions 0.9086 0.9774 0.9418 (+0.0214)
Directives 0.7963 0.6375 0.7081 (+0.1126)

Commisive 0.6364 0.5930 0.6139 (+0.0587)

Macro Avg 0.8045 0.7789 0.7889 (+0.0546)
Weighted Avg 0.8526 0.8573 0.8530 (+0.0293)
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