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In order to better understand the role of transportation convenience in location preferences, as well as to uncover transportation system 

patterns that span multiple modes of transportation, we score geographic regions according to properties of their multimodal 
transportation networks.  The various scores are then used to classify regions by their dominant mode of transportation, and rank/cluster 
regions by their transportation features.  Specifically, we analyze the train, bus, and road networks of major cities and neighborhoods of 
Japan to classify them as being train-centric, bus-centric, or car-centric.  We also generate scores based on various transportation features 
to rank cities by their access to public transportation and to categorize/cluster neighborhoods of major cities by their transportation and 
accessibility properties. We find that business hubs (having low populations) are conveniently reachable via public transportation but vary 
greatly in their automobile accessibility.  Suburban regions have lower connectivity overall but are typically strongly connected to at least 
one business area.  As increasingly rural areas rely more strongly on the road and bus networks, but the network features do not correlate 
highly with population density. 

 

1. Introduction 
Transportation networks can be considered multi-graphs or 

multilayer networks insofar as there are links of different types 
connecting nodes representing locations.  However, they are also 
fundamentally geographically embedded which constrains the 
network structure and requires the inclusion of continuous 
distance and time weights in discrete network measures.  This 
fusion of network and geographic metrics offers the opportunity 
to augment network similarity measures as well as fill crucial 
data gaps about transportation efficiency, accessibility, 
connectivity, and policies. 

2. Data 
The geographic foundation of our analysis is a 54,127m2 

(125m inner radius) hexagonal grid covering all of Japan. This is 
used to define locations as the centers of each hex using 
GoogleMap’s coordinates of Tokyo Station (139.7649361E, 
35.6812405N) as a fixed reference point.  In order to compare 
cities and regions within cities, we define a region as all hexes 
with centroids within 20 km of a selected point.  We chose a 
variety of points across the Tokyo, Kyoto, and Osaka 
Metropolitan areas to capture a diversity of situations (city 
centers, suburban bed towns, rural areas, etc.). 

2.1 Network Data 
We utilize four interwoven networks representing distinct 

modes of transportation: train/subway, bus/streetcar, road, and 
walking.  The train/subway network represents stations as nodes 
and train routes as links.  In this way, express trains that skip 
stations are captured by links directly connecting the stations 
used by that route.  The bus network is similarly constructed 

among bus stops. Our road network is constructed via 
OpenStreetMaps in which the nodes are intersections and links 
are road segments; both restricted to roads tagged as tertiary or 
above.   

In addition to these networks we include a “walking network”.  
This walking network connects each node of the train network to 
(1) the closest location of our hex grid as well as (2) any location 
within 500m of each station.  It also connects each bus station to 
the (1) closest location (2) any location within 200m, and (3) any 
train station within 200m (when both train and bus networks are 
included).  The third type of link represents a transfer from train 
to bus.  The walking network also connects the nodes of the road 
network to each location of the hex grid.  Finally, we create 
walking links to convert the location hex grid into a regular k=6 
lattice network to allow (slow) transit on foot where no other 
mode of transportation is available.  This walking network is 
included in all analyses because it is necessary to connect each of 
the transportation networks to the geographic foundation. 

For each link we include a weight equaling the traversal time.  
For the train and bus data this is set from respective schedules 
using the average traversal time for that link for that type of 
train/bus (e.g., local, express).  For the road network we calculate 
the traversal time based on the length of the road segment and the 
official speed limit (i.e., not considering traffic congestion or 
actual speeds).  For the walking network we assume an average 
speed of 4kph (15 minutes per km).  This slower-than-average 
speed is used to account for congestion as well indirect walking 
routes. 

In addition to the travel times, we also incorporate a transfer 
time where appropriate to account for both moving from one 
platform to another as well as the waiting time for the next 
train/bus/taxi/etc.  Specifically, we add 5 minutes when 
switching between trains of different lines or types at the same 
station, and 3 minutes for switching modes: (train ↔ bus, train 
↔ road, or bus ↔ road (walking time is already included in the 
walking link connecting stations, bus stops and intersections).  
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Although only a rough approximation of the interstitial time gap, 
it sufficiently summarizes the variance across locations, times of 
day, walking speeds, congestion conditions, etc. without adding 
unnecessary complication to the network model. 

2.2 Demographic Data 
In order to assess practical (versus potential) accessibility we 

incorporate data regarding the population distribution into our 
analysis.  We take 250m2 square grid population data obtained 
from [eStat2018] using grid coordinates from [geoSpacial2018].  
Then we resample it to our hex grid using overlap proportions to 
interpolate the hex populations.   

3. Methods 
To compare neighborhoods within a city we collect the 

locations within a 5km radius of multiple secondary and tertiary 
city centers (these regions overlap).  We isolate the transportation 
networks to within the region of analysis and apply scoring 
methods to the individual and combined transportation networks.  
Our most basic evaluation utilizes standard network measures 
such as diameter, eccentricity profiles, and betweenness profiles 
along with their time/distance weighted versions.  Additionally, 
we will include specifically geographic and transportation-
focused measures such as the profile of times to travel to each 
regional location, a profile of the number of people reachable 
within 5, 10, 15, 20 minutes, and the population weighted load 
on the transportation network to reach the region center.   

3.1 Network Measures 
To start we calculate several standard network measures (mean 

degree, mean betweenness, mean eigenvector centrality, mean 
eccentricity, diameter, clustering coefficient, alpha and beta 
indices, etc.) on of the following transportation networks: 
train+walk, bus+walk, road+walk, train+bus+walk, and 
train+bus+road+walk.  We do this for each of several focal areas 
within Tokyo, Kyoto, and Osaka.  This battery of tests allows us 
to examine both differences in transportation networks for each 
area and differences among areas for each transportation network.   

For each transportation network we calculate the travel times 
using Dijkstra’s algorithm: breadth-first summation of traversed 
edges’ time weights.  The core algorithm is augmented to handle 
transfer times at appropriate junctures.  Isochrones are sets of 
locations binned by travel time, although most of our measures 
can and do utilize the real-valued traversal times. 

3.2 Geotemporal Measures 
As a basic measure of accessibility, we compute time-

weighted number of hexes reachable form each hex: ∑j 1 / tij in 
which tij is the shortest time from hex i to hex j.  Collecting the 
population data allows us to determine the sociability score of 
each location; that is, the number of people who can reach each 
location weighted by the time it takes to reach it.  We simplify 
and generalize the measure from [Biazzo2018] to handle 
continuous travel time values and averaged edge traversal times.  
For each hex grid space i we calculate ∑j Pj / tij in which Pj is the 
population of grid space j and tij is again the shortest time from 
hex i to hex j.  We furthermore include geotemporal versions of 
certain network measures, such as the time-weighted eccentricity 

(longest, shortest-time path from the center to the periphery) and 
time-weighted betweenness. 

3.3 Machine Learning Techniques 
In addition to providing a profile of the multifaceted 

transportation system, the network and geotemporal measures 
above are also fuel for clustering and discriminant analysis.  We 
apply an ensemble of available measures of whole-network 
similarity [Soundarajan2014] (NetSimile [Berlingerio2012], 
Normalized LBD [Richards2010], Graphlets [Pržulj2004]) as a 
basis for distance calculations in addition to standard vector-
based methods.  Using those distance measures we then apply an 
ensemble of available unsupervised learning techniques (K-
means, spectral clustering, affinity propagation, agglomerative 
clustering, Gaussian mixture) on the regional profiles to score, 
cluster, and classify them.   

4. Results and Conclusions 
This is still a work in progress, but preliminary results reveal 

cities clustered into those which have a dense rail system (e.g. 
Tokyo), dense regions that instead rely on buses for public 
transportation (e.g. Kyoto), and regions with weak public 
transportation that require automobiles (e.g. small cities and 
suburbs).  Although we expected these features to correlate well 
with population density; we instead find that other factors 
heavily influence the type and convenience of a transportation 
network; factors such as average income, percent of commercial 
properties, and age demographics.  

Within cities we see a familiar pattern of easily accessible 
central regions with low populations and regions of higher 
population density further out, with populations again tapering 
down even further out.  These suburban regions often have 
convenient public transport to the city centers, but locally require 
buses and/or cars for daily transportation. An analysis of 

 
Figure 1. Isochrone map of Tokyo centered on Tokyo Station 
using the train+walk network. Darker colors indicate shorter 
travel times. 
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demographics on the presence of children and elderly within the 
household should also correlate well with a high score on car-
centric transportation.  These and other results create a multi-
faceted scoring of properties by their transportation and 
demographic features.  Our current efforts aim to summary and 
visualize these results in an intuitive and interactive way that will 
lead to greater insights and deeper questions. 

While most applications of machine learning to transportation 
networks aim at traffic prediction, flow efficiency, and rerouting, 
we are particularly interested in identifying cities with 
underdeveloped public transportation systems and regions within 
cities with poor accessibility. Related to the latter point, we will 
uncover differences in regional accessibility by mode of 
transportation (e.g., areas that are only convenient if one has 
access to a car).  Identifying under- and over-serviced areas can 
help in policy decisions including infrastructure planning and 
housing development.  Finally, the fusion of geographic and 
network measures to score areas by the convenience of, and their 
reliance on, varying modes of transportation can inform 
decisions for location services (such as apartment hunting, ride 
sharing, and new store positioning). 

4.1 Future Work 
We will extend this analysis by including additional 

demographic and geographic data in the analysis.  Our primary 
purpose here is scoring and clustering areas by transportation 
accessibility.  Future work will examine the relationship between 
accessibility and socio-economic factors such as unemployment, 
income, home-ownership, household structure, age profile, crime, 
etc.  We are also interested in identifying network community 
structure differences [Bohlin2014] among the transportation 
modes; that is, which geographic regions are considered to be 
parts of which neighborhoods when considering different 
networks. Finally, we wish to pursue question of robustness and 
efficiency via knockout and detour analyses. This can address 
response to accidents/failures, and further to identify required 
structural and throughput changes required to adapt to short-term 
passenger changes (e.g. the Olympics) and long-term 
demographic changes (e.g., aging population).   

Finally, we are strongly interested in the impact of bicycle 
ride-sharing programs on transportation flow.  Although these 
programs have long been popular in Europe and China, and 
bicycles usage is high across Japan, there is very little data or 
analysis on bicycle usage and its interaction with other 
transportation modes.  The recent growing popularity of bicycle-
sharing programs will provide additional data to foster more 
advanced impact studies. 
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