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Evaluating Road Surface Condition by using Wheelchair Driving Data
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Providing accessibility information on sidewalks for mobility impaired people is an important social issue. Until now, the
authors have evaluated the accessibility of sidewalks by estimating the road surface condition by supervised learning on the
accelerometer data mounted on wheelchairs. Video recording and data labeling to accelerometer data based on the video for
teacher data require enormous costs and become problematic. This paper proposed and evaluated a novel weakly supervised
road surface condition evaluation system of using positional information automatically acquired at driving as a label. The
evaluation result showed that weakly supervised learning method using locational label captured detailed features of road
surfaces, and classified moving on slopes, curb climbing, moving on tactile indicators, and others with a mean F-score of

0.57 and accuracy of 0.71 close to those of supervised learning method.

1. Introduction

Providing accessibility information on sidewalks for mobility
impaired people, such as elderly people and wheelchair users, is
one of the important social issues. The conventional methods for
gathering accessibility information are as follows: a system that
experts evaluate images of sidewalks for each case [Ponsard 06],
a crowdsourcing method to recruit volunteers to take pictures of
sidewalks and evaluate them [Hara 14, Cardonha 13]. All these
methods are based on human power and thus gathering large-
scale accessibility information is difficult. Because of the recent
expansion of intelligent gadgets, such as smartphones and
wristwatch-shaped vital sensors, there is a growing movement of
sensing human activities [Swan 13, Nagamine 15]. The authors
have been proposing a system which evaluates road surface
condition by machine learning using accelerometer data. This
system focuses on the fact that the observed values of the
accelerometer mounted on a wheelchair is influenced by the
condition of the road surfaces. In machine learning, however,
video recording and video-based labeling to acceleration data for
teacher data require a huge cost and become a serious problem.
In various machine learning fields, weakly supervised learning
[Zhou 18] methods that do not require conventional detailed
teacher labels have been proposed [Oquab 15, Gidaris 18, You
18]. In this paper, the authors propose and evaluate the road
surface condition evaluation system by weakly supervised
learning which uses positional information labels which can be
automatically acquired at the time of driving and thus does not
require conventional detailed labels. Our contributions are as
follows: we propose a novel method of weakly supervised
learning of extracting feature representations of the road surface
condition from accelerometer data without conventional detailed
labels; we verify the effectiveness of our method using actual
data.
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Figure 1 Outline drawing of road surface condition evaluation
system by wheelchair sensing and weak supervision.

2. Road surface condition evaluation system

Figure 1 shows an outline of the proposed system. Vibration
waveforms of wheelchair movement are collected by an
accelerometer mounted on a wheelchair. Extracting road surface
information from vibration waveforms using machine learning,
the extracted data is accumulated and visualized on a web map.
Extracting influence of the road surface condition from the raw
accelerometer data is not easy [Lara 12, Liu 17]. Therefore, it is
important to convert observed accelerometer data to indexes
which represent the condition of the road surface. Some methods
for expressing the road surface condition in several discrete
classes by creating acceleration data classifiers using machine
learning have been proposed [Iwasawa 12, Iwasawal5, Iwasawa
16], and a method for acquiring more detailed road surface
features than applied several discrete labels by using feature
values extracted from pre-trained DCNN is proposed [Takahashi
18]. However, these methods depend on detailed road surface
condition labels and require enormous costs.

3. Road surface condition evaluation by
weakly supervised learning

Dataset

The total of nine wheelchair users, including six manual
wheelchair users(M1~M6) and three Powered wheelchair
users(P1~P3), participated in the experiment. Their actions while
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driving about 1.4 km of a specified route around Yotsuya station
in Tokyo were measured by an accelerometer (iPod touch)
mounted on the lower part of the wheelchair seat, and positioning
data of Quasi-Zenith Satellite System (QZSS) was measured at
the same time. In order to confirm the situation where the
acceleration data sample was acquired, the video of the
participant's driving state and the driving road surface condition
were taken during the experiment. Acceleration values in the X, y,
and z axes of the accelerometer were sampled at 50 Hz, and the
total of 1,341,142 samples (about 8 hours) was obtained.
Weakly supervised label

For the training of DCNN, positional information was used as a
weakly supervised label as a method of weakly supervised
learning. For the positional information in this paper, we checked
the location where the accelerometer data was measured by
visual observation of the recorded video and used the GPS data
(latitude, longitude) acquired on Google Map website as
positional information. In assigning labels to the acceleration
data, all the sidewalks traveled at the time of the experiment were
divided into meshes of an uniform width, and a grid belonging at
the time of the measurement of the acceleration data was
assigned as a weakly supervised label (as shown in Figure 2).
Labels were generated under the conditions of a grid width of 3
m, 4 m, and 5 m.
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Figure 2 Outline of grids to be weakly supervised label.
The left shows how all the sidewalks were divided into meshes,
and the right shows how each grid was assigned as a label.

Weakly supervised DCNN

The three axes of acceleration data were segmented into 28502
and 6692 pieces by a sliding window method with a window size
of 400 (about 8 seconds) and 100 (about 2 seconds) respectively
and overlapping rate of 0.5. As shown in Figure 3, the DCNN
used for weakly supervised learning is composed of 7 layers of
an input layer, 4 convolutional layers, one fully connected layer,
and an output layer. By using the hierarchical structured network
and training functions in layers from input to output, feature
extractor s and the classifier f those are effective for

classification are trained simultaneously.
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Figure 3 Illustration of the DCNN structure.

Acquisition and Clustering of feature representations
The procedure of acquiring road surface feature representations
from weakly trained DCNN and clustering the similar condition
road surfaces based on the extracted feature representations is
described in order from Step 1 to Step 5.
Step 1: Acquisition of an output pattern of all data
For the DCNN model trained with eight participants data sets as
a training data, the remaining one participant data set was input
to the DCNN and 100 units output pattern in the fully connected
layer was extracted as feature representations of each segmented
data.
Step 2: Clustering of feature representations
After compressing the acquired 100-dimensional feature values
to a dimension whose cumulative contribution rate exceeds 80%
by principal component analysis, clustering was performed on
the compressed feature values using the k-means method.
Step 3: Visualization on a map
Clusters generated in Step 2 were color-coded and each point of
each cluster was visualized on a map.
Step 4: Analysis of clustering results
Visually comparing the plot result obtained in Step 3 and the
recorded video during driving, the road surface condition
belonging to each cluster was analyzed.
Step 5: Optimum grid width, window size, and number of
clusters
Based on Step 3 and Step 4, the optimum grid width and
window size were selected, then a number of clusters that
captures the most detailed features of the road surface conditions
were selected under best grid width and window size.

4. Qualitative evaluation by clustering

a) Selection of optimum grid width
Plot results with a grid width of 3 m, 4 m, and 5 m with a
cluster number of 5 and a window size of 400 were compared.
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Figure 4 Comparison of clustering results under each
condition of a grid width of 3 m, 4 m, and 5 m.
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As shown in Figure 4, at the grid width of 5 m, the DCNN
captured the features of the ascending slope the most. From this
result it is considered that the larger the grid width is, the larger
the range of the road surface learned as one label in the DCNN,
and DCNN captured an ascending slope where features are easier
to read in the larger range.
b) Selection of optimum window size Slope
Plot results with a window size of 100 and 400 with a cluster
number of 5 and a grid width of 5 m were compared. As Shown
in Figure 5, at the window size of 400, DCNN captured the
features of the ascending slope the most. From this result, it is ;
considered that the larger window size is, the larger each \dg !
segmented training sample in DCNN, and DCNN captured an W"O"'O?rd Lap
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% Figure 6  Clustering result with the number of clusters 9 in
% grid width 5 m and window size 400.
4 k| The 1st and 3rd lap are clockwise, so the slope is ascending.
o R N ] The 2nd lap is counterclockwise, so the slope is descending.

Figure 5 Comparison of clustering results under each Table I Optimum number of clusters for each participant.

condition of a window size of 400 and 100.

Participant Ml M2 M3 M4 M5 M6 Pl P2 P3
9 8 9 9 9

number of clusters || 10 8 9 8

¢) Selection of the optimum number of clusters

Plot results with the number of clusters 5 to 10 with a grid
width of 5 m window size of 400 were compared. As shown in
Figure 6, the ascending slope and descending slope were

Table 2 Performance comparison between supervised
DCNN and weakly supervised DCNN method.

classified into one cluster respectively, and curbs were classified Method Supervised DCNN SVM LR
into a specific cluster. Table 1 shows the number of clusters that Mean F-Score 0.58 0.57 0.54
classified the most detailed road surface condition for each user. Accuracy 0.81 0.71 0.74

d) Comparison with conventional labeling method

As a result of comparing Figure 5 and clustering result of
feature values extracted from detailed labeled trained DCNN, it
was shown that weakly supervised method captured more
detailed road surface features than the conventional DCNN.

Comparison with Supervised DCNN
Table 2 is a comparison of the classification score. The mean
F-score and the accuracy of each class were used as evaluation
indexes. Supervised DCNN is the conventional method of
training the dataset with DCNN labeled four types of road

5. Quantitative evaluation of features
acquired from weakly supervised DCNN

Evaluation method

Using feature values extracted from weakly trained DCNN as
an input, a new classifier was trained as a classification task of
four types of labeled road surfaces: slope, curb, braille block, and
others. These four types represent typical features of road
surfaces, so this method evaluates feature values extracted from
weakly supervised DCNN whether they are useful as an indicator
of the condition of the road surface.

surfaces. SVM

uses feature values extracted from weakly supervised DCNN as
an input and uses Support Vector Machine as a classifier. LR
uses feature values extracted from weakly supervised DCNN as
an input and uses Logistic Regression as a classifier. As a result,
in LR, the mean F-Score was 0.04 points lower than the
supervised DCNN, and the accuracy was 0.07 points lower than
the supervised DCNN. From this result, it is considered that
weakly supervised method misclassified others which occupy
more than 70 % of the four labels into a slope, curb, or braille
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block, and classified the three types of the road surface to the
same degree as Supervised DCNN.

6. Conclusion

In this paper, we proposed a novel method to evaluate road
surface condition by weakly supervised learning using positional
information as a label and accelerometer data. As a result, it was
shown that feature representations acquired by Weakly
Supervised DCNN can capture more detailed features of road
surfaces than feature values by conventional supervised DCNN,
and quantitatively estimate road surface condition. As a future
work, we will propose a method to acquire higher-precision
feature representations based on new weak label generation
method and conduct a detailed analysis of what kind of road
surface conditions DCNN with the position information extracts.
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