冷蔵庫内青果物のための鮮度評価システムの提案
Proposal of freshness evaluation system for fruits and vegetables in refrigerator.

三瓶 和輝*1
Kazuki Sambe

井上 聡*2
Satoru Inoue

*1 埼玉工業大学大学院 工学研究科
Graduate School of Engineering, Saitama Institute of Technology

*2 埼玉工業大学
Saitama Institute of Technology

Our purpose of this study is reduce food loss and waste. However, it is difficult for the systems to obtain analysis which can be food expiration dates only with fruits and vegetables. because they do not food expiration dates the conditions of fruits and vegetables. Ethylene gas and alcohol gas is speed up the ripening process. In their paper, development a analysis system for ethylene gas and alcohol gas proposed in fruits and vegetables. As a result of experiments and comparisons with freshness systems showed the basic validity of the proposed system.

1. 序論
青果物の鮮度・品質計測手法の多くは、機械学習を用いた画像分類であり、計測に膨大な数の画像を用いる場合や認識の固有差による直訳的な問題点が存在し、認識精度だけでは、結果の信頼性を評価するのは難しい。一方で、特徴を絞った学習や客観評価などの手法が広く研究されている。
それに対し本研究では植物ホルモンであるエチレンに着目し、青果物の腐敗過程の定量を試みる。エチレンは植物の成長にとって非常に重要であり、簡単な構造を有するアルケン（炭化水素）で、植物ホルモンの中では唯一のガス状物質である。エチレンは、発芽、花芽の形成、茎や根の伸長、果実の成熟、葉や花の老化、植物の成熟過程に大きく関わっている。これを用いることで、青果物の成熟過程を確認するだけでなく、実際の青果物が腐敗していくかどうかを予測・検証することができる。
さらに表面色彩と環境測定から、外観品質による鮮度（腐敗）評価と客観的評価の関係性を把握し、将来に機械学習につながる鮮度評価のためのデータセットと評価方法を提案する。

2. 研究目的
青果物の消費期限は無記載であり、食品ロス問題が発生する。また、視覚障害者は、腐敗の状態を判別できず、安全な事柄が困難である。本研究では、エチレン計測システムのハードウェアを作成し、さらにその連動してカメラ撮影や温度変化を日ごとに記録するソフトウェアを構築する。さらに、これを用いることで、青果物の成熟経過を確認するだけでなく、実際の青果物が腐敗していくかを検証し予測することを目的とする。
先行研究[Sabilla 2017]では、人工ニューラルネットワークを利用した手法とアルコール濃度からマンゴーの鮮度評価が行われていた。比較対象には、清潔空気、新しいマンゴー、完熟したマンゴーをそれぞれ評価することで、鮮度を評価し、識別することができる。
一方、Kasbe ら[Kasbe 2015]や Sanaeidar[Sanaeidar 2014]の研究では、様々なガスセンサを用いたバナナの鮮度評価が行われている。バナナの成熟過程で、アルコール、CO、天然ガス、アンモニアが発生し、増加する事が研究で確認されており、その中でも、大きな変化が見られるのは、アルコールであり、バナナの成熟に影響があると思われる。
以上により、アルコールには鮮度評価の一つの指標になるため、本研究は、アルコールとエチレンをそれぞれ検証することにより、鮮度評価の比較、誤検出を防ぐことができると考えられる。

3. 要素技術
3.1 Raspberry Pi
Raspberry Pi は英国の「Raspberry Pi Foundation」が提供する、手のひらに収まるほどの小さなコンピュータ、省電力で動作し、Linux の OS が利用できる、Linux 動作のため、Web ブラウジング、動画、音楽、プログラミングなど幅広い用途に活用できる。

3.2 Arduino
Arduino は小型のマイコンボードであり、多数の入出力ポートと簡単な Arduino 言語により、センサやアクチュエータをプログラミングから容易に制御できる。

3.3 各種センサ
本研究で使用するガスセンサを表 1 に示す。青果物の鮮度に影響される気体として、アルコール、エチレンのガス検出センサをそれぞれ選定した。また、これらの気体は同じ炭化水素であり、成熟の影響を受けやすいと考えた。

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Seed Inc.</th>
<th>Seed Inc.</th>
<th>Maeno Giken Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model number</td>
<td>Multichannel Gas Sensor</td>
<td>MQ-3</td>
<td>C2H4-MD-100</td>
</tr>
<tr>
<td>Target gases</td>
<td>Methane, Alcohol, etc.</td>
<td>Alcohol, Benzine, etc.</td>
<td>Ethylene, Alcohol, etc.</td>
</tr>
</tbody>
</table>

3.4 Relone
Relone は、ファイルとディレクトリを同期させるオムラインプログラムである。AmazonDrive、Dropbox、GoogleDrive OneDriveなど、多数のクラウドストレージサービスに対応する。

連絡先：三瓶 和輝,埼玉工業大学大学院,
〒369-0203 埼玉県入谷市若葉台 1690 番地,
Tel.048-585-6405, E-mail：80055lt@gmail.com
4. 提案するシステム

4.1 仕様
本研究では、青果物の鮮度を計測するための装置として、冷蔵庫案内向けの鮮度評価システムを提案する。

鮮度評価システムでは、低温環境での動作、暗室によるカメラ撮影、電源の供給、結露対策、外部（自宅等）から処理されたデータへのアクセスなどの仕組みが必要である。

4.2 ハードウェア実装
図 1 に本システムの実現方法を示す。計測装置は、水槽ケース(310×190×165mm)を用いた。水槽ケースには蓋があり、
空気穴設けることで、開封環境と密閉環境の計測が可能になった。センサの取得は、メタン、アルコール、エチレンの他に、温
度、湿度、アンモニア、一酸化炭素、二酸化窒素、プロパン、ブタノール、水素、エタノールの検出を行っている。

4.3 ソフトウェア実装
計測装置のセンサ及び、撮影データを記録するプログラムを、Arduino、Python 言語を用いて実装した。センサ側のプログラム
は、1 分毎に各センサのデータを取得し、CSV データで出力する。撮影側のプログラムは、冷蔵庫の暗室を想定し、撮影前
に照明を点灯、撮影後消灯するように設定した。カメラは Raspberry Pi PiNoir Camera V2 を使用し、照明は、LISIPAROL
White LED for RPi Camera を使用した。撮影は、最大解像度の 3280×2464 を保存する。

4.4 クラウド環境の設定
クラウド環境は OneDrive を選択した。OneDrive は他のオンラインストレージに比べ、１ファイル 15GB のファイルサイズ制限
はあるものの、アップロード数に制限がない。そのため、１分毎にアップロードするなどといった大量イベント処理に適してい
る。

また、Raspberry Pi の CPU は ARM のため、AMD の x86 系ソフト Skype、OneDrive、Dropbox は基本的に対応してい
ないため、コマンドラインによるデータ処理を行う必要がある。

本研究では、rcclone を導入することで、クラウドストレージにデータの保存が可能になった。それにより、外部からのアクセスで、
取得したデータを確認することが可能となる。

5. 実験
実際に計測装置を実行し、センサからのデータ取得、カメラ撮影の動きを確認した。図 2、図 3 にその様子を示す。

図 2: 計測実験(室内)
図 3: 計測実験(冷蔵庫内)

5.1 事前準備
実験には、冷蔵庫内と室内環境での計測を行った。

・冷蔵庫内での計測
市販のバナナ 1 本 180.9g(sunimu 朝のしあわせバナナ フィリピン産)を使用した。計測期間は 5 日間 2018 年 11 月 8 日
(木)00:00:00～11 月 12 日(月)23:59:24 とする。冷蔵庫内の温度
範囲は 7.3～12.5℃、湿度範囲は 21.3～49.3% であった。

・室内環境での計測
市販のバナナ 1 本 125.8g (TOPVALU BESTPRICE 甘みさ
わやかバナナ フィリピン産) を使用した。計測期間は
10 日間 2019 年 1 月 17 日(木)00:00:45～1 月 27 日
(木)00:31:37 とする。室内の温度範囲は 18.5～29.4℃、湿度範
囲は 15.9～38.4% であった。

5.2 冷蔵庫内の計測
図 4 にアルコールの計測結果を示す。冷蔵庫内のアルコールセンサは、周期的に波が生じる結果となった。おそらく、冷蔵
庫内の空気の循環により、ガスがある時間で減少していると推
測する。図 5 は各センサの濃度比較であり、アルコールが最も
高い反応を示していることが分かれる。また、アルコールが検出す
ると温度も上昇するため、アルコールとの温度は関係があると考え
られる。

図 3: アルコール計測結果
図 4: 各センサの濃度比較
5.3 室内計測の結果
図5にアルコール濃度計測結果、図6にエチレン濃度計測結果を示す。室内のアルコールは、右上がりのグラフであり、時間が進むにつれて濃度が下がるため、鮮度評価に向いている。
それに対し、エチレンは、バナナの表面が変化した時にガス濃度が上がり、バナナ腐敗後、ガス濃度が下がる結果となった。エチレンはバナナが腐敗する前に、発生する性質があると考え、鮮度予測が確認できた。

5.4 鮮度の判別
取得したガス濃度から鮮度を評価するには、センサの最小値、最大値の基準を設定し、100%評価、計測日の平均値を算出する必要がある。図7に日ごとのバナナの変化を示す。日付下的濃度は日付ごとに平均した濃度値である。1月17日から新鮮な状態、1月20日が腐敗状態である。エチレン20ppm、アルコールが1ppmそれぞれ超えた場合、鮮度が腐敗しているかを判別することができる。

6. 結論
室内計測でエチレンとアルコールから鮮度評価を行った。鮮度の基準値を設けることで、これらのガスから鮮度判別ができる。

7. 考察
ガス濃度から鮮度を評価するために、腐敗状態のガス濃度から最小値、最大値の基準を設定し、100%評価する必要がある。
そのために、計測装置の開封状態と密封状態を評価し、データを取得することで鮮度の判別基準を定めることができる。
一方で、冷蔵庫内の測定も課題である。この問題を解消する為には、値の分析やノイズ除去などの対策を講じる必要がある。

8. 今後の展開
エチレンとアルコールによる鮮度推定の理論の確立を進めていくことが最も重要課題である。挙げられる課題としては、図8のように、複数の画像を用意し、予測モデルと関連付け、それに対応する日数を算出することで予測を可能にする。また、より精度を高めるには、取得データをさらに増やしていく必要がある。
また、バナナに限らず、他の果物などのバリアレーションを増加することにより、過熟の抑制が可能となる。
さらに、ガスセンサーと画像による物性認識を組み合わせることにより、予測精度向上に繋がり、鮮度予測を実現できると考える。
参考文献


