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In this study, to classify the underground objects from the ground penetrating radar (GPR) images by the three dimensional convolutional 
neural network (3D-CNN).  Conservation management of roads is important for maintaining infrastructure, and in order to explore the 
whole road width at once, it is frequently performed to arrange a plurality of GPR in parallel and sweep. In this study, 3D-CNN is used to 
simultaneously process this plurality of GPR images and improve the classification performance. As a result, it reports that the classification 
performance improves for the dielectric constant and the size of buried objects. 
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CNN ε w l h
[%] [%] [%] [%]

A-A 2D ResNet18 95.2 ± 1.1 - - -
A-A 2D ResNet18 95.1 ± 1.8 90.3 ± 1.0 79.4 ± 1.5 95.9 ± 1.8
A-A 2D ResNet34 95.4 ± 1.9 - - -
A-A 2D ResNet34 95.5 ± 1.3 92.0 ± 1.2 77.0 ± 3.7 96.0 ± 0.9
A-A 3D ResNet18 94.7 ± 0.9 - - -
A-A 3D ResNet18 94.8 ± 0.8 86.3 ± 1.8 91.7 ± 4.4 94.8 ± 1.0
A-A 3D ResNet34 95.1 ± 1.6 - - -
A-A 3D ResNet34 94.3 ± 1.6 86.1 ± 4.8 91.8 ± 5.5 94.2 ± 1.8
B-B 2D ResNet18 95.2 ± 1.5 - - -
B-B 2D ResNet18 97.3 ± 0.7 81.0 ± 2.8 75.8 ± 2.9 92.1 ± 1.9
B-B 2D ResNet34 95.7 ± 0.9 - - -
B-B 2D ResNet34 95.7 ± 1.5 82.2 ± 4.0 72.7 ± 3.1 89.9 ± 5.0
B-B 3D ResNet18 98.4 ± 0.2 - - -
B-B 3D ResNet18 98.0 ± 1.7 85.2 ± 4.3 92.3 ± 1.5 90.7 ± 0.7
B-B 3D ResNet34 97.9 ± 0.6 - - -
B-B 3D ResNet34 97.9 ± 1.0 88.4 ± 1.7 89.7 ± 2.0 89.4 ± 2.8
A-B 2D ResNet18 63.9 ± 5.7 - - -
A-B 2D ResNet18 71.8 ± 3.0 60.8 ± 3.6 50.9 ± 3.0 60.3 ± 2.0
A-B 2D ResNet34 67.6 ± 2.0 - - -
A-B 2D ResNet34 68.7 ± 5.0 62.1 ± 2.3 52.1 ± 3.1 61.1 ± 5.3
A-B 3D ResNet18 78.0 ± 4.6 - - -
A-B 3D ResNet18 75.1 ± 2.6 68.6 ± 4.9 78.3 ± 2.6 71.0 ± 3.6
A-B 3D ResNet34 76.8 ± 1.7 - - -
A-B 3D ResNet34 75.2 ± 2.5 71.0 ± 6.2 72.5 ± 3.2 75.9 ± 4.6
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