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Tsunami early warning systems using water pressure gauges operate around the world to cope with damage caused
by tsunami waves. The systems use a correlation between observed pressure gauges value around coast and tsunami
height at prediction points near shore, because tsunami height basically depends on the topography (bathymetry)
during its propagation. In predicting the tsunami height, it is important both avoiding underestimation and
increasing accuracy in order to minimize the damage. The conventional method selects an scenario which has
the largest tsunami height of near the observed pressure gauges value in the tsunami database that contains pre-
computed tsunamis offshore and nearshore from 1506 earthquake scenarios. Although this conventional method
can avoid under estimation, it puts the prediction accuracy second. In this study, we extended tsunami height
prediction method using Gaussian Process regression and proposed a prediction method with less underestimation
and higher accuracy. We investigate the prediction accuracy and the possibility of underestimation by our proposed
method that uses pressure gauges data from the Dense Ocean-floor Network System for Earthquakes and Tsunamis
(DONET) in the Nankai trough.
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