待機児童問題へ応用可能なマッチング問題と資源配分問題の融合問題

Student－Project－Resource Matching－Allocation Problems：Two－Sided Matching Meets Resource Allocation

八尋 健太郎 ${ }^{* 1}$ 山口 知晃 ${ }^{* 1}$ Anisse Ismaili＊2 横尾 真 ${ }^{* 1}$
Kentaro Yahiro Tomoaki Yamaguchi
Makoto Yokoo

${ }^{* 1}$ 九州大学 大学院システム情報科学府
Graduate School of Information Science and Electrical Engineering，Kyushu University
＊2理化学研究所 革新知能統合研究センター AIP
RIKEN，Center for Advanced Intelligence Project AIP

Abstract

In this paper，we consider a student－project－resource matching－allocation problem，in which students and re－ sources are assigned to projects．A project＇s capacity for students is endogenously determined by the resources allocated to it．Traditionally，this problem is divided into two separate problems：（1）resources are allocated to projects based on some expectations（resource allocation problem），and（2）students are matched to projects based on the capacities determined in the previous problem（many－to－one matching problem）．Although both problems are well－understood，unless the expectations used in the first problem are correct，we obtain a suboptimal outcome． Thus，it is desirable to solve this problem as a whole without dividing it．We first show that finding a nonwasteful matching is $\mathrm{FP}^{\mathrm{NP}}[\mathrm{log}]$－hard，and deciding if a stable matching exists is $\mathrm{NP}^{\mathrm{NP}}$－complete．These results involve two new problems of independent interest：Paretopartition，shown $\mathrm{FP}^{\mathrm{NP}}$［poly］－complete and strongly $\mathrm{FP}^{\mathrm{NP}}[\mathrm{log}]$－ hard，and $\forall \exists-4$－Partition，shown strongly $N^{N P}$－complete．Then，we show that no strategyproof mechanism satisfies fairness and very weak efficiency requirements．Given this impossibility result，we develop a novel strate－ gyproof mechanism that strikes a good balance between fairness and efficiency，which is assessed by experiments．

1．序論

本論文では，学生・プロジェクト・リソース間の割当問題 （SPR）を考察する．SPR は選好に基づき，学生を各プロジェ クトに割り当てるマッチング問題［Roth 90］としての側面を持 つ一方で，リソースを各プロジェクトに割り当てる資源配分問題［Korte 18］としての側面を併せ持った問題である．従来の マッチング問題では，各プロジェクトの容量が外生的に与えら れると仮定するのが一般的であるが，SPR では，各プロジェ クトの容量はリソースの配分によって内生的に決定されるもの として扱う。

学生の選好を為政者が事前に把握していれば，組合せ最適化の技術を用いることで，適切にリソースを配分することが できる。また，各プロジェクトの容量があらかじめ定められて いれば，仮に為政者が学生の選好を把握していない場合にお いても，望ましい性質を満たすマッチングを求めることができ る［Gale 62］．しかしながら，為政者が学生の選好を完全に把握している状況は稀である。ゆえに，将来の動向予測や過去の情報に基づきリソースを配分し，プロジェクトの容量を決定し た上で，学生をその容量の下で割り当てるアドホックな手法が現在一般的に用いられている。この手法では，学生の選好に基 づく適切なリソース配分が行われていない場合，望ましいマッ チングを返すことはできない。

待機児童問題［Okumura 18］は，この一連の流れに代表さ れる問題である。日本の多くの自治体では，児童（学生）と保育士（リソース）を各保育園に割り当てる際，以下の手順が取 られている。まず，保育園が各年齢層（プロジェクト）ごとに受け入れ可能な児童数を公表し，各保育士がどの年齢層を担当

連絡先：八尋健太郎，九州大学大学院システム情報科学府，819－ 0395 福岡県福岡市西区元岡 744 番地，（092）802－3576， yahiro＠agent．inf．kyushu－u．ac．jp

するかを過去の統計等から決定する。その後，各年齢層で保育士が対応できる児童数に応じて，児童を割り当てる。この手法 では，実際に入園を希望してきた様々な年齢層の児童数に応じ て，担当する保育士数を柔軟に変更することができず，児童の需要と保育士の供給のバランスを保つことができない。この問題は，自治体が実際に入園を希望する児童数を見積もらず，保育園で各年齢層ごとに受け入れ可能な児童数を事前に決定した ことによる。このような事態を回避するために，二つの手順に分けて問題を解くのではなく，一度に解くことが望まれる。
本論文は，制約付きマッチング問題に関する多くの既存研究 に基づいている。マッチング問題では，割り当てる学生の最大数を制限する個別上限制約が考察されることが一般的である。 しかしながら，現実の問題では，社会的要請からマッチングの結果に関して様々な制約条件が同時に付与されることが通例 である。例えば，学校の集合に関して割り当てる学生数を制限 する地域上限制約，学校に割り当てられる最低人数を保証す る個別下限制約，受け入れる学生の多様性を保証するアファー マティブアクションなどがある。他にも，計算複雑性の観点か ら，制約付きマッチング問題を考察することも一般的である。
本論文では，まず，SPRに関する様々な問題を定義し，そ の計算複雑性を考察する。その後，公平性と効率性の両立不可能性に基づき，SPR を解くメカニズムを提案する。最後に，提案メカニズムと SPR で動作する既存メカニズム［Goto 17］ を公平性，効率性の観点から比較を行い，提案メカニズムの性能を評価する。

2．モデル

学生・プロジェクト・リソース間の割当問題（SPR） は $\left(S, P, R, \succ_{S}, \succ_{P}, T_{R}, q_{R}\right)$ の組で定義される。 $S=$ $\left\{s_{1}, \ldots, s_{n}\right\}$ は学生の集合である。 $P=\left\{p_{1}, \ldots, p_{m}\right\}$ はプロ ジェクトの集合である．$R=\left\{r_{1}, \ldots, r_{k}\right\}$ はリソースの集合で

ある．$\succ_{S}=\left(\succ_{s}\right)_{s \in S}$ は $P \cup\{\emptyset\}$ に対して学生側が持つ選好順序の組である。 $\succ_{P}=\left(\succ_{p}\right)_{p \in P}$ は $S \cup\{\emptyset\}$ に対してプロジェク ト側が持つ優先順序の組である。リソース r は容量 $q_{r} \in \mathbb{N}_{+}$ を持つとし，リソースの容量の組を $q_{R}=\left(q_{r}\right)_{r \in R}$ と表す。リ ソース r は割当可能なプロジェクトの集合 $T_{r} \subseteq P$ が与えられ ており，割当可能なプロジェクトの集合の組を $T_{R}=\left(T_{r}\right)_{r \in R}$ と表す。
$X \subseteq S \times P$ は学生とプロジェクトの契約の集合を表し，契約 $(s, p) \in X$ は学生 s がプロジェクト p に割り当てられることを意味する．学生 s にとってプロジェクト p が許容可能であると は，$p \succ_{s} \emptyset$ が成り立つことをいう。また，プロジェクト p にとっ て学生 s が許容可能であるとは，$s \succ_{p} \emptyset$ が成り立つことをいう。一般性を失わず，$(s, p) \in X$ とは，p にとって s が許容可能であ ることと同値であるとする ${ }^{* 1}$ ．$Y \subseteq X$ に対し，学生 s が割り当てられたプロジェクトを $Y(s) \in P \cup \emptyset$ ，プロジェクト p に割 り当てられた学生の集合を $Y(p) \subseteq S$ で表す。 $Y^{\prime}(s) \succ_{s} Y(s)$ または $Y^{\prime}(s)=Y(s)$ であることを $Y^{\prime}(s) \succeq_{s} Y(s)$ と表す。

リソース配分 $\mu: R \rightarrow P$ は各リソース r から割当可能なプ ロジェクト $\mu(r) \in T_{r}$ への写像である。 $q_{\mu}(p)$ は $\sum_{r \in \mu^{-1}(p)} q_{r}$ を表すとする ${ }^{* 2}$ 。また，各リソースは必ず一つのプロジェク トに割り当てられるものとする。すなわち，一つのリソースを分割して複数のプロジェクトに割り当てることはできない。

定義1（実現可能性）$Y \subseteq X$ に対し，任意の $s \in S$ につい て，（i）$Y(s)=\emptyset$ または（ii）$Y(s) \succ_{s} \emptyset$ が成り立つとき，Y は学生側実現可能という。学生側実現可能な契約の集合をマッ チングと呼ぶ。また，任意の $p \in P$ について，$|Y(p)| \leq q_{\mu}(p)$ となるリソース配分 μ が存在するとき，Y はプロジェクト側実現可能という。学生側実現可能かつプロジェクト側実現可能 であるとき，Y は実現可能であるという，マッチング Y がリ ソース配分 μ の下で実現可能であるとは，Y は学生側実現可能かつ任意の $p \in P$ について，$|Y(p)| \leq q_{\mu}(p)$ が成り立つこ とをいう。

学生の選好の組 \succ_{S} を入力とし，マッチング Y と，Y を実現可能とするリソース配分 μ を出力する関数 φ をメカニズム と定義する。また，任意のSPRに対して，性質 A を満たす実現可能なマッチングまたはリソース配分を出力するとき，その メカニズムは A を満たすと呼ぶ。 $\varphi_{s}\left(\succ_{S}\right)$ は $\varphi\left(\succ_{S}\right)=Y$ とな る $Y(s)$ を表す。 $\succ_{S \backslash\{s\}}$ は s 以外の全ての学生の選好の組を表し，$\left(\succ_{s}, \succ_{S \backslash\{s\}}\right)$ は s の選好は \succ_{s} ，それ以外の学生の選好 の組が $\succ_{S \backslash\{s\}}$ である場合の全ての学生の選好の組を表す。

定義2（公平性）マッチング Y において，学生 s が他の学生 s^{\prime} に妥当な不満を持つとは，（i）$p \succ_{s} Y(s)$ かつ（ii）$s \succ_{p} s^{\prime}$ となる学生 $s^{\prime} \in Y(p)$ が存在することをいう。妥当な不満を持 つ学生が Y に存在しないとき，Y は公平性を満たすという。

すなわち，学生 s が $^{\prime} s^{\prime}$ に妥当な不満を持つとは，s は現在割 り当てられているプロジェクト $Y(s)$ より p の方が好ましく，p も現在受け入れている s^{\prime} より s の優先順序が高い場合を指す。

定義3（非浪費性）マッチング Y において，学生 s がプロジェ クト p に空きシートを要求するとは，（i）$p \succ_{s} Y(s)$ かつ（ii） $(Y \backslash\{(s, Y(s))\}) \cup\{(s, p)\}$ が実現可能であることをいう。空 きシートを要求する学生が Y に存在しないとき，Y は非浪費性を満たすという。

[^0]すなわち，学生 s がプロジェクト p に空きシートを要求す るとは，s 以外の学生の割当は変えることなく，s が現在割り当てられているプロジェクトより，より望ましいプロジェクト p に移動しても，その割当が実現可能であることをいう。

定義 4 （安定性）マッチング Yが安定性を満たすとは，公平性，非浪費性を満たすことをいう。

定義5（パレート効率性）マッチング Y^{\prime} が Y をパレート支配するとは，（i）任意の $s \in S$ について $Y^{\prime}(s) \succeq_{s} Y(s)$ かつ （ii）$Y^{\prime}(s) \succ_{s} Y(s)$ となる s が存在することをいう。マッチン グ Y が他の任意のマッチングからパレート支配されないとき， Y はパレート効率性を満たすという。

パレート効率性は非浪費性より強い性質である。すなわち， あるマッチングがパレート効率性を満たすとき，そのマッチン グは非浪費性も満たす。

定義 6 （戦略的操作不可能性）メカニズム φ が戦略的操作不可能性を満たすとは，任意の $s, \succ_{s}, \succ_{S \backslash\{s\}}$ ，$\succ_{s}^{\prime}\left(\succ_{s}^{\prime}\right.$ は s の任意の選好）について $\varphi_{s}\left(\left(\succ_{s}, \succ_{S \backslash\{s\}}\right)\right) \succeq_{s} \varphi_{s}\left(\left(\succ_{s}^{\prime}, \succ_{S \backslash\{s\}}\right)\right)$ が成り立つことをいう。

戦略的操作不可能性は，任意の学生は他の学生の申告に関 わらず，自身の正直な選好を申告することが弱支配戦略となる ことを保証する性質である。
SPRは，分配制約が遺伝性と呼ばれる性質を満たす問題の クラスに分類される［Goto 17］．Goto らはその中で，戦略的操作不可能性を満たすメカニズムを三種類示している。Serial Dictatorship（SD）は，パレート効率性を満たすメカニズム である．SD では，各学生が一人ずつ，制約に違反しない範囲 で自身が最も好むプロジェクトに割り当てられる。しかしな がら，SD は計算複雑性の観点から扱いにくいメカニズム＊3 であり，公平性を満たさない。公平性を満たすメカニズムと しては，Artificial Cap Deferred Acceptance（ACDA）があ る．ACDA は，リソース配分 μ をあらかじめ固定した上で， Deferred Acceptance（DA）［Gale 62］を実行する．DA は，各学生が最も好むプロジェクトに申し込み，プロジェクトは学生 を優先順序に基づき，定員に達するまで受け入れ，それ以外 を断る．断られた学生は，次に好ましいプロジェクトに申し込 む，これを，断られる学生がいなくなるまで繰り返すメカニズ ムである。しかしながら，学生の選好とは無関係に μ を決定す るため，ACDA は効率性の観点から望ましいメカニズムでは ない。Adaptive Deferred Acceptance（ADA）は，SD と DA を併用した非浪費性を満たすメカニズムであり，複数の学生が プロジェクトに申し込んだ上で，段階的にDAを動作させる。 しかしながら，SD と同様に，計算複雑性の観点から望ましい メカニズムではない。また，各プロジェクトの容量が与えられ ていないと仮定した場合，ADAはSDと同一の動作となる。
SPRでは，公平性と非浪費性を満たすマッチングが存在し ない状況が存在する。学生 s_{1}, s_{2} ，プロジェクト p_{1}, p_{2} ，どち らのプロジェクトにも割当可能な容量1のリソースがある問題を考える。また，学生の選好は $p_{1} \succ_{s_{1}} p_{2}, p_{2} \succ_{s_{2}} p_{1}$ であ り，プロジェクトの優先順序は $s_{2} \succ_{p_{1}} s_{1}, s_{1} \succ_{p_{2}} s_{2}$ とする。対称性から，リソースが p_{1} に割り当てた場合を考える。公平性から，s_{2} は p_{1} に割り当てられる。このとき，s_{2} は p_{2} に空 きシートを要求する。ゆえに，公平性と非浪費性は両立するこ とができない。

[^1]
3．計算複雑性

本章では，以下で定義される問題の計算複雑性を考察する。
定義 7
－SPR／FA：SPR とマッチング Y が与えられたとき，Y は実現可能であるか？
－SPR／Nw／VERIF：SPR とマッチングYが与えられたと き，Y は非浪費性を満たすか？
－SPR／Nw／Find：SPRが与えられたとき，非浪費性を満 たすマッチングを発見する。
－SPR／Stable／VERIF：SPR とマッチングYが与えられ たとき，Yは安定性を満たすか？
－SPR／Stable／Exist：SPR が与えられたとき，安定性 を満たすマッチングは存在するか？

定理1 SPR／FAはNP完全である。
証明は紙幅の都合上割愛するが，NP 完全であることが知ら れている4－PARTITIONを利用して証明を行う。

3.1 非浪費性に関する計算複雑性

定理2 SPR／Nw／VERIF はCO－NP 完全である。
証明は紙幅の都合上割愛するが，定理1と同様に証明を行う。
定理3 SPR／Nw／Findは $\mathrm{FP}^{\mathrm{NP}}[$ poly $]$ に属し， $\mathrm{FP}^{\mathrm{NP}}[\mathrm{log}]$ 困難である。

完全な証明は紙幅の都合上割愛するが，概略を示す。まず， ParetoPartiton と呼ばれる問題を新たに定義する．その上 で，ParetoPartiton は $\mathrm{FP}^{\mathrm{NP}}[\mathrm{log}]$ 困難であることを示し， ParetoPartiton が SPR／Nw／Find に多項式時間帰着可能 であることを示す。

3.2 安定性に関する計算複雑性

定理 4 SPR／Stable／Verif は co－NP 完全である。
証明は紙幅の都合上割愛するが，定理 2 と同様に証明を行う。
定理 $5 \mathrm{SPR} / \mathrm{StabLe} / E x i s t$ は $\mathrm{NP}^{\mathrm{NP}}$ 完全である。
証明は紙幅の都合上割愛するが，定理 3 と同様に，$\forall \exists-4-$ PARTITIONと呼ばれる問題を新たに定義した上で証明を行う。

4．戦略的操作不可能性を満たすメカニズム

本章では，SPRにおける両立不可能性に基づき，戦略的操作不可能なメカニズムを新たに提案する。

4.1 両立不可能性

戦略的操作不可能性を満たすメカニズムにおいて，公平性 と極めて弱い効率性が両立しないことを示す。

定義 8 （弱非浪費性）マッチング Y において，学生 s が空き シートを強く要求するとは，（i）$Y(s)=\emptyset$ かつ Y を実現可能 とする任意のリソース配分 μ において（ii－a）$Y \cup\{(s, p)\}$ が μ の下で実現可能 かつ（ii－b）$p \succ_{s} \emptyset$ を満たすプロジェクト p が存在することをいう。空きシートを強く要求する学生が Y に存在しないとき，Y は弱非浪費性を満たすという。

すなわち，学生 s がどのプロジェクトにも割り当てられて おらず，現在の割当を実現可能とする任意のリソース配分にお いて，s を \emptyset より好ましいプロジェクト p に移動させた割当が実現可能であるとき，sは空きシートを強く要求する。

定義 9 （選好一致性）学生がプロジェクト p^{\prime} より p を選好一致で好むとは，任意の $s \in S$ について，（i）$(s, p) \in X$ かつ （ii）$p \succ_{s} p^{\prime}$ が成り立つことをいう。
すなわち，プロジェクト p は任意の学生を許容可能であり，任意の学生は p^{\prime} より p を好むことを指す。
定義 10 （リソース効率性）リソース配分 μ がリソース効率性 を満たすとは，学生がプロジェクト p^{\prime} より p を選好一致で好 んでいるとき，p と p^{\prime} のどちらにも割当可能なリソースは p^{\prime} に割り当てられないことをいう。
非浪費性は弱非浪費性より明らかに強い性質である。同様 に，パレート効率性はリソース効率性より強い性質であること を示す。証明は紙幅の都合上割愛する。
定理 6 実現可能なマッチングYがパレート効率性を満たすな らば，（i）Y が μ の下で実現可能かつ（ii）リソース効率性を満 たすリソース配分 μ が存在する。

以上の定理をもって，SPR における両立不可能性を示す。証明は紙幅の都合上割愛する。
定理 7 SPR において，公平性，弱非浪費性，リソース効率性，戦略的操作不可能性を満たすメカニズムは存在しない。

4．2 Sample and Vote Deferred Acceptance

第2章で述べたように，ACDA は効率性の観点から，SD， ADA は計算複雑性，公平性の観点から望ましいメカニズムで はない。そこで，戦略的操作不可能性を満たすメカニズムであ る Sample and Vote Deferred Acceptance（SVDA）を新たに提案する。
メカニズム 1 （SVDA）
ステップ 1：標本学生 $S^{\prime} \subseteq S$ を選択する $\left(S \backslash S^{\prime}\right.$ を一般学生 と呼ぶ），その後，学生 S^{\prime} で SD を実行し，マッチング $Y_{S^{\prime}}$ を得る。
ステップ 2：マッチング $Y_{S^{\prime}}$ が実現可能かつ R^{\prime} が極小となる ように，リソース $R^{\prime} \subseteq R$ を分配する。すなわち，$Y_{S^{\prime}}$ が実現可能となる $R^{\prime \prime} \subset R^{\prime}$ が存在しないように分配する。

ステップ 3：標本学生 S^{\prime} の選好に基づき，残りのリソース $R \backslash R^{\prime}$ を分配し，リソース配分 μ を得る。その後，各プ ロジェクトの容量を $q_{\mu}(p)-\left|Y_{S^{\prime}}(p)\right|$ に設定し，学生 $S \backslash S^{\prime}$ でDAを実行する。
標本学生 S^{\prime} の選好に基づき，リソース $R \backslash R^{\prime}$ を分配する方法として，本論文では以下の手法を用いた。任意の標本学生 $s \in S^{\prime}$ は自身の選好しs ${ }^{\text {に基づき，各プロジェクトにそれぞれ }}$投票する。各プロジェクトは，その標本学生に i 番目に好まれ ていれば，$m-i+1$ 点を得る。このボルダ得点に基づき，リ ソース $R \backslash R^{\prime}$ は各プロジェクトに分配される。

定理 8 SVDA は弱非浪費性，リソース効率性，戦略的操作不可能性を満たし，一般学生について公平性を満たす。
証明 紙幅の都合上，戦略的操作不可能性，一般学生について の公平性についてのみ示す。SD は戦略的操作不可能性を満た すことから，標本学生 S^{\prime} にとって，明らかにSVDA は戦略的操作不可能性を満たす。 さらに，一般学生の選好によらず各プ ロジェクトの容量は外因的に与えられ，かつ DA は戦略的操作不可能性を満たすため，一般学生 $S \backslash S^{\prime}$ にとっても，SVDA は戦略的操作不可能性を満たす。さらに，DA は公平性を満た すことから，一般学生は妥当な不満を持つことはない。

図 1：各メカニズムの公平性，効率性に関するトレードオフ

5．評価実験

コンピュータシミュレーションにより，SVDA，ACDA，SD， ADA の性能を公平性，効率性の観点から比較した。学生は $n=200$ ，プロジェクトは $m=10$ ，リソースは $k=20$ で あり，リソース r が各プロジェクトに割当可能となる確率を それぞれ 0.2 とし，T_{r} を生成している。容量 $1,5,10,15$ ， 20 のリソースがそれぞれ 4 つずつ与えられているとする。ま た，Mallows モデルに基づき学生の選好を生成した。この数理モデルでは，学生 s の厳密な選好 \succ_{s} の生成確率 $\operatorname{Pr}\left(\succ_{s}\right)$ は $\frac{\exp \left(-\phi \cdot d\left(\succ_{s}, \succ_{s}\right)\right)}{\sum_{\succ_{s}^{\prime}} \exp \left(-\phi \cdot d\left(\succ_{s}^{\prime}, \succ_{s}\right)\right)}$ で与えられる。ここで，$\phi \in \mathbb{R}$ は拡散パ ラメータであり，\succ_{s} は中心選好（今回は可能な学生の選好の全通りから一様ランダムに選んでいる）と呼ばれる．$d\left(\succ_{s}, \succ_{s}\right)$ は \succ_{s} と $\succ_{\hat{s}}$ 間のケンドール距離である。ケンドール距離は，\succ_{s} と $\succ_{\widehat{s}}$ 間の対象対の中で順序が不一致な対の数を表す。 $\phi=0$ のとき，一様ランダムと同一となり，ϕ が増加するにつれて，学生の選好は中心選好に漸近する。また，各プロジェクトの優先順序は一様ランダムで生成している。各パラメータに関して 100 インスタンスを生成した。ADA は各プロジェクトに容量 を設定する必要があるため，$\sum_{r \mid p \in T_{r}} q_{r}$ に設定している。
図 1 は各メカニズムの公平性，効率性に関するトレードオ フを表している．x 軸は学生のボルダ得点の平均値を表し，y軸は妥当な不満を持たない学生数を表している。また，SVDA において，標本学生の割合 $\rho=\left|S^{\prime}\right| / n$ を 0.1 に設定している．

図 1 （a）は，SVDA が公平性，効率性の観点でバランスの取れた結果を返していることを，各インスタンスごとの結果 としてプロットしている。ただし，$\phi=0.7, \rho=0.1$ と設定し ている．図 1 （b）は，$\phi=0.7$ の下で，ρ を 0.1 から 0.4 まで変化させた場合の 100 インスタンスの結果の平均を各メカニ ズムごとに示している．SVDA は，ρ が小さい場合はACDA， ρ が大きい場合はADA の結果に類似していることが分かる。 すなわち，標本学生の割合である ρ を適当に設定することで，公平性，効率性のバランスを制御することが可能となる。図 1 （c）は，$\rho=0.1$ の下で，ϕ を $0.1,0.3,0.7$ と変化させ，図 1 （b）と同様に 100 インスタンスの結果の平均を各メカニズム ごとに示している．ϕ が大きい場合は，学生の選好が類似して いることで，リソース配分が効率性に大きな影響を与える。 ϕ が小さい場合は，各メカニズム間の差は大きく見られなくなっ た。この結果から，SVDA は標本学生と一般学生の選好が類似している場合のみ，メカニズムの性能が発揮されていること が分かる。しかしながら，学生の選好が類似していない場合に

は，各メカニズムはそれぞれ望ましい結果を出力していること も分かるため，SVDA は限られた場合のみ有効に動作するメ カニズムと結論づけることはできない。

6．結論

本論文では，学生・プロジェクト・リソース間の割当問題 （SPR）を考察した。まず，SPRにおける計算複雑性を考察し，公平性，極めて弱い効率性，戦略的操作不可能性を満たすメカ ニズムが存在しないことを証明した。そこで，公平性，効率性 の観点でバランスの取れた結果を返し，戦略的操作不可能性 を満たすメカニズムSVDAを新たに提案した。今後の課題は，公平性，効率性のバランスに関する標本学生の割合 ρ の最適値に関する議論や，計算複雑性の更なる考察，リソース配分に関して新たな制約を設けた問題の考察などが挙げられる。

謝辞

本研究はJSPS 科研費 JP17H00761 の助成を受けたもので す．深く感謝いたします。

参考文献

［Gale 62］Gale，D．and Shapley，L．S．：College Admissions and the Stability of Marriage，The American Mathemat－ ical Monthly，Vol．69，No．1，pp．9－15（1962）
［Goto 17］Goto，M．，Kojima，F．，Kurata，R．，Tamura，A．， and Yokoo，M．：Designing Matching Mechanisms un－ der General Distributional Constraints，American Eco－ nomic Journal：Microeconomics，Vol．9，No．2，pp．226－ 62 （2017）
［Korte 18］Korte，B．and Vygen，J．：Combinatorial Opti－ mization：Theory and Algorithms，Springer（2018）
［Okumura 18］Okumura，Y．：School Choice with General Constraints：A Market Design Approach for the Nursery School Waiting List Problem in Japan，Social Science Research Network（2018）
［Roth 90］Roth，A．E．and Sotomayor，M．A．O．：Two－ Sided Matching：A Study in Game－Theoretic Modeling and Analysis（Econometric Society Monographs），Cam－ bridge University Press．（1990）

[^0]: ＊1 戦略的操作不可能性を満たすメカニズムを設計する上で，各学生 の選好は私的情報，それ以外は公的情報だと仮定するためである。
 $* 2 \quad \mu^{-1}(p)=\emptyset$ の場合は，$q_{\mu}(p)=0$ とする。

[^1]: ＊3 SPR／FA（次章にて示す）を $O(m n)$ 回解く必要がある．

