# 部分的選好下における学校選択メカニズム 

School Choice Mechanism with Partial Preferences

和田 凌司<br>Ryoji Wada<br>八尋 健太郎<br>$\underset{\text { Tomoaki Yamaguchi }}{\text { 山知晃 }}$<br>東藤 大樹 Taiki Todo<br>横尾 真<br>Makoto Yokoo

九州大学 大学院システム情報科学府<br>Graduate School of Information Science and Electrical Engineering，Kyushu University


#### Abstract

The traditional two－sided matching problems assume that all agents fully know their own preferences．As markets grow large，however，it becomes impractical for agents to precisely assess their rankings over all agents on the other side of the market．In this paper，we consider a school choice problem with partial preferences which are not strictly orderings．The complete preferences are learned through interviews，revealing the pairwise rankings among all interviewed agents．In many real－world settings，however，it is natural to consider that it will cost to perform interviews．Therefore，we require the policy that guarantees the student－optimal matching and minimizes the number of interviews．In the one－to－one matching problem，there exists a mechanism which works when all schools have the same partial preference．We relax that requirement and then extend to the many－to－one matching problems．Under that settings，we develop Lazy Deferred Acceptance mechanism（LDA）which yields the student－optimal matching with minimum interviews．


## 1．序論

学生と学校，研修医と病院のような 2 種類のエージェント間のお互いの好み（選好）に基づく適切な割当を求めるマッチ ング問題は，経済学や人工知能，マルチエージェントシステム の分野において盛んに研究されている。

マッチング問題に関する既存研究の多くは，各エージェント の持つ選好が厳密に順序付けられており，学生や学校が自らの選好を完全に把握している問題を前提としている。しかしなが ら，学生や学校が数多く存在する現実的な仮定の下では，学生 がすべての学校の情報を正確に得ることは困難であり，同様に学校がすべての学生の差異を明確にすることも容易ではない。選好が厳密に順序付けられていないモデルを扱う問題の例と して，選好が確率的に与えられるマッチング問題などが存在す る．本論文ではその中で，各エージェントの選好の一部が明確 に順序付けられていない，部分的な選好の下でのマッチング問題を考察する。

各エージェントが潜在的に持つ選好の厳密な順序付けを解明する方法として，様々な手法が考察されている。例えば，学生に質問を行うことにより，その学生が厳密に順序付けを行っ ていない学校の順序付けを明らかにするクエリが存在する。本論文ではそのような手法の中でも，学生が学校に行うインタ ビューにより，各エージェントが厳密な順序付けを行うモデル を扱う，個々の学生や学校に対して行うクエリに対して，イン タビューでは学生と学校が相互に情報を得る。学生は順序付 けが明確でない複数の学校にインタビューを行うことにより， それらの学校間の厳密な順序付けを行うことができる。学校側も同様に，複数の学生からインタビューを受けることによ り，それらの学生間の順序付けが可能となる。すなわち，イン タビューによって，双方のエージェントが潜在的に持つ厳密な選好を明らかにすることができる。

インタビューのような情報を収集する行為には，時間的•金銭的なコストが生じると仮定するのが一般的である。そこで，
連絡先：和田凌司，九州大学大学院システム情報科学府，819－ 0395 福岡県福岡市西区元岡 744 番地，（092）802－3576， r－wada＠agent．inf．kyushu－u．ac．jp

必要最小限のインタビューを用いて，各エージェントが潜在的 に持つ厳密な順序付けを解明しつつ，望ましい性質を満たす割当を求めることが望まれる。
各エージェントの選好がすべて厳密に順序付けられている場合，Deferred Acceptanceメカニズム（DA）［Gale 62］によ り，学生最適性を満たす割当を求めることができる。学生最適性を満たす割当は，安定性を満たす割当の中で，すべての学生 が最も好む割当である．部分的な選好の下での一対一マッチン グ問題においては，必要最小限のインタビューを行うことで， DA と等価な割当，すなわち学生最適性を満たす割当を求める メカニズムが存在する［Rastegari 13］．しかしながら，このメ カニズムはすべての学校に対して，共通な部分的選好を仮定し ている，そこで本論文では，より一般的な仮定の下における多対一マッチング問題を考察する。
本論文の貢献は主に 2 つである。 1 つ目は，任意の部分的な選好の下における多対一マッチング問題に対して，学生最適な割当を出力する Lazy Deferred Acceptance メカニズム （LDA）の提案である．LDA においては，既存のメカニズム が動作するために要求した仮定を必要とせず，多対一マッチ ング問題を扱うことができる。その上で，LDA が出力する割当が満たす性質は，既存研究と等価であることを証明した。2 つ目は，部分的な選好に対する既存の仮定を緩和した，整合性 の提案である．学校側の部分的な選好に整合性を仮定するこ とにより，LDA は必要最低限のインタビューのみを行う。ま た，整合性を満たす学校側の部分選好においては，各学校の持 つ選好がそれぞれ異なる場合も存在する。これにより，既存研究を一般化したモデルにおいて，LDA が既存研究と同等の性質を満たすことを明らかにした。

## 2．モデル

部分的選好下における多対一マッチング問題は， $\left(S, C, P_{S}, P_{C}, q_{C}\right)$ の組で定義される．$S=\left\{s_{1}, \ldots, s_{n}\right\}$ は学生の集合である。 $C=\left\{c_{1}, \ldots, c_{m}\right\}$ は学校の集合である。 $X=S \times C$ は契約の集合であり，契約 $(s, c) \in X$ は，学生 $s$ が学校 $c$ に割り当てられていることを意味する。 $X^{\prime} \subseteq X$ に

おいて，$X_{s}^{\prime}=\left\{c \in C \mid(s, c) \in X^{\prime}\right\}$ は学生 $s$ が割り当てられ ている学校の集合を，$X_{c}^{\prime}=\left\{s \in S \mid(s, c) \in X^{\prime}\right\}$ は学校 $c$ に割り当てられている学生の集合を表す。 $\succ_{S}=\left(\succ_{s_{1}}, \ldots, \succ_{s_{n}}\right)$ は，学生側が持つ潜在選好の組である。学生 $s$ が持つ潜在選好 $\succ_{s}$ は，Øを含むすべての学校 $C \cup\{\emptyset\}$ を厳密に順序付け る．学校 $c$ が $s$ にとって受け入れ可能であるとは，$c \succ_{s} \emptyset$ が成り立つことである．$\succ_{C}=\left(\succ_{c_{1}}, \ldots, \succ_{c_{m}}\right)$ は，学校側が持 つ潜在選好の組である。学校 $c$ が持つ潜在選好 $\succ_{c}$ は，Øを含むすべての学生 $S \cup\{\emptyset\}$ を厳密に順序付ける。学校 $s$ が $c$ にとって受け入れ可能であるとは，$s \succ_{c} \emptyset$ が成り立つことで ある。 $P_{S}=\left(P_{s_{1}}, \ldots, P_{s_{n}}\right)$ は，学生側が持つ部分選好の組で ある．学生 $s$ が持つ部分選好 $P_{s}$ は，$s$ に関するすべての同格 クラスを厳密に順序付ける。同格クラス $P_{s}^{i}$ は $C \cup\{\emptyset\}$ の部分集合であり，s が潜在選好を把握できない初期の段階で厳密に順序付けできない学校との契約の集合のうち，s が $i$ 番目に好むものである。同格クラスの順序付けにおいて，$i<j$ ならば，任意の学校 $c \in P_{s}^{i}$ と $c^{\prime} \in P_{s}^{j}$ に対して，$c \succ_{s} c^{\prime}$ が成り立つ。また，$\bigcup_{i=1}^{\left|P_{s}\right|} P_{s}^{i}=C \cup\{\emptyset\}$ かつ，$i \neq j$ に対して $P_{s}^{i} \cap P_{s}^{j}=\emptyset$ である。 $P_{C}=\left(P_{c_{1}}, \ldots, P_{c_{m}}\right)$ は，学校側が持つ部分選好の組である。学生 $c$ が持つ部分選好 $P_{c}$ は，$c$ に関 するすべての同格クラスを厳密に順序付ける。同格クラス $P_{c}^{i}$ は $S \cup\{\emptyset\}$ の部分集合であり，$c$ が潜在選好を把握できない初期の段階で厳密に順序付けできない学生との契約の集合の うち，$c$ が $i$ 番目に好むものである。同格クラスの順序付け において，$i<j$ ならば，任意の学生 $s \in P_{c}^{i}$ と $s^{\prime} \in P_{c}^{j}$ に対 して，$s \succ_{c} s^{\prime}$ が成り立つ。また，$\bigcup_{i=1}^{\left|P_{c}\right|} P_{c}^{i}=S \cup\{\emptyset\}$ かつ， $i \neq j$ に対して $P_{c}^{i} \cap P_{c}^{j}=\emptyset$ である．$q_{C}=\left(q_{c_{1}}, \ldots, q_{c_{m}}\right)$ は，学校の定員のベクトルである。

各学生•学校が互いの詳細な情報を持たない初期の段階にお いては，各エージェントは自分の潜在選好を把握していないと考える。したがって，部分選好のみが入力として与えられ，そ の部分選好に矛盾しない厳密な順序付けのいずれか 1 つが真 の潜在選好となる。

定義 1 （実現可能性）．$X^{\prime}$ が 学校側実現可能であるとは，任意の学校 $c \in C$ について $\left|X_{c}^{\prime}\right| \leq q_{c}$ が成り立つことである。 $X^{\prime}$ が 学生側実現可能であるとは，任意の学生 $s \in S$ につい て，$s$ の受け入れ可能な学校 $c$ に対して $X_{s}^{\prime}=\{c\}$ を満たす， あるいは，$X_{s}^{\prime}=\emptyset$ を満たすことである。 $X^{\prime}$ が実現可能であ るとは，$X^{\prime}$ が学校側実現可能かつ学生側実現可能であること である．また，実現可能な契約の集合をマッチングという。

マッチングに望まれる性質として，以下のいくつかの性質を定義する。

定義 2 （非浪費性），マッチング $X^{\prime}$ において，学生 $s$ が学校 $c$ に空きシートを要求するとは，$(s, c) \in X \backslash X^{\prime},\left(s, c^{\prime}\right) \in X^{\prime}$ に対して $c \succ_{s} c^{\prime}$ を満たし，かつ，$\left(X^{\prime} \backslash\left\{\left(s, c^{\prime}\right)\right\}\right) \cup\{(s, c)\}$ が実現可能であることである。マッチング $X^{\prime}$ が非浪費性を満た すとは，空きシートを要求する学生が存在しないことである。

定義3（公平性）．マッチング $X^{\prime}$ における $(s, c) \in X^{\prime}$ に対 して，学生 $s$ が他の学生 $s^{\prime}(\neq s)$ に妥当な不満を持つとは， $\left(s, c^{\prime}\right) \in X \backslash X^{\prime},\left(s^{\prime}, c^{\prime}\right) \in X^{\prime}$ について，$c^{\prime} \succ_{s} c$ かつ $s \succ_{c^{\prime}} s^{\prime}$ が成り立つことである。マッチング $X^{\prime}$ が公平性を満たすと は，妥当な不満を持つ学生が存在しないことである。

定義 4 （安定性），マッチング $X^{\prime}$ が安定性を満たすとは，$X^{\prime}$ が非浪費性を満たし，かつ，公平性を満たすことである。

定義 5 （学生最適性）．マッチング $X^{\prime}$ が学生最適であるとは， $X^{\prime}$ が安定性を満たし，かつ，他の任意の安定性を満たすマッ チングと比較して，どの学生もより低い選好順位の学校に割り当てられていないことである。任意の入力に対して学生最適な マッチングを出力するとき，そのメカニズムは学生最適である という。

学生最適なマッチングは，安定性を満たすマッチングの中で すべての学生が最も好むマッチングである。各エージェントが自分の潜在選好を把握している場合，学生最適なマッチングは常に一意に求まる［Gale 62］．

部分選好から学生最適なマッチングを求めるために，学生が学校にインタビューを行うことで追加の情報を得る必要があ る。学生 $s$ が学校 $c$ に対してインタビューを行うことを $(s: c)$ と表す。インタビュー $(s: c)$ を行うことにより，学生 $s$ は既 にインタビューを行った学校と $c$ を厳密に順序付けることが できる．同様に，学校 $c$ は既にインタビューを行った学生と $s$ を厳密に順序付けることができる。

インタビューを行うことで明らかになった順序付けを以下 のように定義する。

定義 6 （インタビュー状態）。学生 $s$ のインタビュー状態 $\mathcal{I}_{s}$ とは，$s$ がインタビューを行った学校間の，$s$ の潜在選好に基 づく厳密な順序付けである。同様に，学校 $c$ のインタビュー状態 $\mathcal{I}_{c}$ とは，$c$ とインタビューを行った学生間の，$c$ の潜在選好 に基づく厳密な順序付けである。また， $\mathcal{I}_{S}=\left(\mathcal{I}_{s_{1}}, \cdots, \mathcal{I}_{s_{n}}\right)$ ， $\mathcal{I}_{C}=\left(\mathcal{I}_{c_{1}}, \cdots, \mathcal{I}_{c_{m}}\right)$ とする。

任意の学生 $s \in S$ と任意の学校 $c, c^{\prime} \in C$ に対して，$P_{s}$ にお いて $s$ が $c$ を $c^{\prime}$ より厳密に高く順位付けているとき， $\mathcal{I}_{s}$ にお いても $c$ を $c^{\prime}$ より厳密に高く順位付けているならば，インタ ビュー状態 $\mathcal{I}_{S}$ が部分選好 $P_{S}$ を詳細化するといい， $\mathcal{I}_{S} \triangleleft P_{S}$ と表す。同様に，任意の学校 $c$ と任意の学生 $s, s^{\prime} \in S$ に対し て上記が成り立つならば，インタビュー状態 $\mathcal{I}_{C}$ が部分選好 $P_{C}$ を詳細化するといい， $\mathcal{I}_{C} \triangleleft P_{C}$ と表す。また，潜在選好 $\succ_{S}$ や $\succ_{C}$ が，部分選好 $P_{S}, P_{C}$ を詳細化するとき，それぞれ $\succ_{S} \triangleleft P_{S}, \succ_{C} \triangleleft P_{C}$ と表す。

定義 7 （ポリシー）。インタビュー状態 $\mathcal{I}_{S} \triangleleft P_{S}, \mathcal{I}_{C} \triangleleft P_{C}$ か らインタビューの実行，あるいはマッチングの出力を行う写像 を，ポリシーという。

ポリシーは，$I=\left(S, C, P_{S}, P_{C}, q_{C}\right)$ を入力として一連のイ ンタビューを行った後，マッチングを出力する。ここでは簡単 のために，入力 $I$ は所与のものであるとしている．ポリシー は直前までのインタビューの結果に基づいて，次に行うインタ ビューを決定する。ポリシーに望まれる性質として，以下を定義する。

定義 8 （健全性）．あるポリシーが健全であるとは，そのポリ シーが任意の潜在選好 $\succ_{S} \triangleleft P_{S}, \succ_{C} \triangleleft P_{C}$ に対して，学生最適なマッチングを出力することである．

健全なポリシーにおいて，学生はインタビューを行ってい ない学校に割り当てられうる。しかしながら，現実的な状況で は，最終的に割り当てられる学生と学校の間では，必ずインタ ビューが行われていることが望ましい。よって，以下の性質を導入する。

定義 9 （慎重性）．あるポリシーが慎重であるとは，そのポリ シーが健全であり，かつ，任意の契約 $(s, c) \in X^{\prime}$ に対し，
$s \in \mathcal{I}_{c}, c \in \mathcal{I}_{s}{ }^{* 1}$ となる場合に限り， $\mathcal{I}_{S}, \mathcal{I}_{C}$ から $X^{\prime}$ を出力す ることである．

すなわち，慎重なポリシーにおいて，学生はインタビューを行った学校のみに割り当てられる。

健全なポリシーを構成すること自体は困難ではない。例え ば，すべての学生がすべての学校にインタビューを行うポリ シーにより，すべてのエージェントの潜在選好が明らかになる ため，既存のメカニズムを用いることが可能である。しかしな がら，このポリシーは必ずしも必要でないインタビューを行う ことがある．また，現実的な仮定において，インタビューには コストがかかると考えるのが自然である。したがって，インタ ビューを行う回数を必要最小限にする健全なポリシーを求めた い。そこで，ポリシーに以下の性質を定義する。ここで，潜在選好が $\succ_{S} \triangleleft P_{S}, \succ_{C} \triangleleft P_{C}$ である場合に，ポリシー $f$ が実行 するインタビューの回数を，$\theta\left(f, \succ_{S}, \succ_{C}, P_{S}, P_{C}\right)$ と表す。

定義 10 （インタビュー数の最小性）．ポリシー $f$ が健全なポリ シー $g$ を弱支配するとは，任意の潜在選好 $\succ_{S} \triangleleft P_{S}, \succ_{C} \triangleleft P_{C}$ に対し，$\theta\left(f, \succ_{S}, \succ_{C}, P_{S}, P_{C}\right) \leq \theta\left(g, \succ_{S}, \succ_{C}, P_{S}, P_{C}\right)$ が成り立つことである。ポリシー $f$ が健全であり，かつ，他の任意 の健全なポリシー $g$ を弱支配するとき，ポリシー $f$ はインタ ビュー数が最小であるという。

本論文ではインタビュー数を最小にするポリシーの発見を目的として，第3章で新たなメカニズムを提案する。

## 3．Lazy Deferred Acceptance メカニズム

Gale と Shapley による既存の Deferred Acceptance メカ ニズム（DA）［Gale 62］は，すべてのエージェントの厳密に順序付けられた選好の下で，学生最適性を満たす。本章では DA に基づき，部分的選好下における多対一マッチング問題におい て，学生最適性を満たす Lazy Deferred Acceptanceメカニズ ム（LDA）を提案する。
部分的選好の下で DA の動作を実現するために，学生が学校に逐次的にインタビューを行うことにより，潜在選好を明 らかにする．学生はある定められた順序付け $O$ に基づいて順番にインタビューを行った後，DA に従って学校に申し込む。 この順序付け $O$ は，部分選好と同様に学生の部分集合に対す る順序付けであり，$k$ 番目に順序付けられる学生の部分集合を $O^{k}$ とするとき，$O=\left(O^{1}, \cdots, O^{k}, \cdots, O^{|O|}\right)$ である。ただ し，$\bigcup_{k=1}^{|O|} O^{k}=S$ であり，$O^{k} \in O$ は りを含まない。また， メカニズムを実行する前の処理として，各学校 $c$ の部分選好内 のある同格クラス $P_{c}^{t} \in\left\{P_{c}^{1}, \ldots, P_{c}^{\left|P_{c}\right|-1}\right\}$ が $\emptyset$ を含む場合， $P_{c}^{t+1}, \ldots, P_{c}^{\left|P_{c}\right|}$ 内の学生 $s$ は $c$ にとって受け入れ可能でない ため，そのような各学生 $s$ について，$c$ を $P_{s}$ 内の同格クラス から削除する。
以上の定義を以て，LDA を定義する。
メカニズム 1 （Lazy Deferred Acceptanceメカニズム（LDA））．

初期値 $X^{\prime}=\emptyset, l_{s \in S}=0, \mathcal{I}_{s \in S}^{\prime}=\emptyset, \mathcal{I}_{c \in C}^{\prime}=\emptyset, k=1$
ステージ $k O^{k}$ 内の各学生 $s \in O^{k}$ に対して，以下を行う ${ }^{* 2}$ 。
ステップ $1 \mathcal{I}_{s}^{\prime}=\emptyset$ である間，以下を繰り返す。

[^0]1．$l_{s} \leftarrow l_{s}+1$ とする．
2．$P_{s}^{l_{s}}$ 内のすべての学校 $c$ について，インタビュー $(s: c)$ を行う。 $\mathcal{I}_{s}^{\prime}$ に $c$ を， $\mathcal{I}_{c}^{\prime}$ に $s$ を加え，順序付ける。

3． $\mathcal{I}_{c}^{\prime}$ に $\emptyset$ が含まれておらず，かつ $P_{c}$ において $s$ と Øが同じ同格クラスに含まれる場合， $\mathcal{I}_{c}^{\prime}$ に $\emptyset$ を加 え，順序付ける。
4． $\mathcal{I}_{c}^{\prime}$ において $\emptyset$ が $s$ より厳密に上位である場合， $\mathcal{I}_{s}^{\prime}$ から $c$ を削除する。
5．$\emptyset \in P_{s}^{l_{s}}$ である場合， $\mathcal{I}_{s}^{\prime}$ に $\emptyset$ を加え，順序付ける。
ステップ $2 \mathcal{I}_{s}^{\prime}$ において $\emptyset$ が最も上位である場合，$s$ をどの学校にも割り当てずに $s$ の割当を終了する。そうでなけ れば，$s$ は $\mathcal{I}_{s}^{\prime}$ において最も上位の学校 $c_{t o p}$ に申し込み， $X^{\prime} \leftarrow X^{\prime} \cup\left\{\left(s, c_{\text {top }}\right)\right\}$ とする。

ステップ $3 q_{c_{t o p}}<\left|X_{c_{t o p}}^{\prime}\right|$ である場合，$c_{\text {top }}$ は $X_{c_{\text {top }}}^{\prime}$ の中 で $\mathcal{I}_{c_{t o p}}^{\prime}$ において最も順位の低い学生 $s_{w}$ を拒否する。 すなわち，$X^{\prime} \leftarrow X^{\prime} \backslash\left\{\left(s_{w}, c_{t o p}\right)\right\}$ とする。

ステップ $4\left|X_{c_{\text {top }}}^{\prime}\right|=q_{c_{\text {top }}}$ である場合，$X_{c_{\text {top }}}^{\prime}$ の中で $\mathcal{I}_{c_{\text {top }}}^{\prime}$ において最も順位の低い学生を $s_{w}$ とする。 さらに，$P_{c_{t o p}}$ あるいは $\mathcal{I}_{c_{t o p}}^{\prime}$ の少なくとも一方において $s_{w}$ より厳密 に下位である各学生 $s_{w}^{\prime}$ に対して，$P_{s_{w}^{\prime}}$ 内の同格クラス と $\mathcal{I}_{s_{w}^{\prime}}^{\prime}$ から $c_{t o p}$ を削除する。

ステップ 3 において $c_{\text {top }}$ から拒否された学生 $s^{\prime}$ が存在す る場合，$s \leftarrow s^{\prime}$ として再度上記のステップを繰り返す。すべ ての学生の割当が決定した場合，$X^{\prime}$ を出力してメカニズムを終了する。 $O^{1}, \cdots, O^{k}$ に含まれるすべての学生に割当が決定 した場合，ステージ $k+1$ を行う。

## 定理 1．LDA は学生最適であり多項式時間で動作する，

証明は紙幅の都合上割愛するが，LDA の出力が DA の出力 と等価になることを利用して証明を行う。

## 4．整合性を満たす部分選好

既存研究［Rastegari 13］では，任意の部分選好の下ではイン タビュー数を最小にするポリシーは必ずしも存在しないが，学校側の部分選好がすべて等しいという仮定をおくことにより，一対一マッチングにおいて，提案メカニズムがインタビュー数 を最小にするポリシーを実行することを示した。本章では，よ り一般的な仮定である整合性を学校側の部分選好に仮定するこ とにより，LDA がインタビュー数が最小であるポリシーを実行することを示す。
学校 $c \in C$ の $\emptyset \in P_{c}^{i}$ となる $i$ に対して，$S_{c}=\bigcup_{j=1}^{i} P_{c}^{j} \backslash\{\emptyset\}$ とする．また，$q_{c}<\left|S_{c}\right|$ を満たす学校の集合を $C_{+}$とする。
有向グラフ $G$ は，頂点集合 $V$ と頂点の順序対の集合 $E \subset$ $\{(i, j) \mid i, j \in V\}$ の組（ $V, E$ ）である。順序対 $(i, j)$ を，$i$ から $j$ への有向エッジと呼ぶ，また，頂点 $i$ に対して， $\operatorname{deg}_{G}^{-}(i)=$ $|\{(j, i) \in E \mid i, j \in V, i \neq j\}|$ を $i$ の入次数という．

定義 11 （部分選好グラフ）．学校 $c \in C_{+}$に対して，頂点集合 $V=S$ であり，かつ，有向エッジの集合 $E_{c}$ が，$P_{c}$ に おいて $s \in S_{c}$ を $s^{\prime} \in S_{c}$ より厳密に高く順位付けるよう な $s$ から $s^{\prime}$ への有向エッジ $\left(s, s^{\prime}\right)$ をすべて含む有向グラフ $G_{c}=\left(V, E_{c}\right)$ を，（学校 $c$ の）部分選好グラフという。すべて

の $c \in C_{+}$について $G_{c}$ が部分選好グラフであるとき，$V=S$ かつ $E_{C}=\bigcup_{c \in C_{+}} E_{c}$ とした有向グラフ $G_{C}=\left(V, E_{C}\right)$ を考 える。 $G_{C}$ が有向非巡回グラフであるとき，$G_{C}$ を部分選好グ ラフという。

すなわち，部分選好グラフは各学生を頂点とし，その中でも $S_{c}$ に含まれる学生について，部分選好における上位の学生か ら厳密に下位の学生への有向エッジを持つ。したがって，学校 $c$ の部分選好グラフ $G_{c}$ は，$S_{c}$ に限定した $c$ の部分選好 $P_{c}$ を表す。

部分選好グラフを用いて，以下の性質を定義する。
定義 12 （整合性）．学校側の部分選好 $P_{C}$ が整合性を満たす とは，任意の学校 $c \in C_{+}$に対して，$G_{c}$ の頂点 $S_{c}$ に関する誘導部分グラフ $G_{c}\left[S_{c}\right]$ と，$G_{C}$ の頂点 $S_{c}$ に関する誘導部分 グラフ $G_{C}\left[S_{c}\right]$ が一致することである。ただし，有向グラフ $G=(V, E)$ の頂点の任意の部分集合 $V^{\prime} \subset V$ に関する誘導部分グラフ $G\left[V^{\prime}\right]$ は，頂点集合を $V^{\prime}$ とし，有向エッジの集合 を $E\left[V^{\prime}\right]=\left\{(i, j) \in E \mid i, j \in V^{\prime}\right\}$ とする有向グラフである。

すなわち，学校側の部分選好が整合性を満たすとき，各学校 $c$ の部分選好グラフ $G_{c}$ が表す，$S_{c}$ に限定した $c$ の部分選好 と，$S_{c}$ に限定した $G_{C}$ が表す部分選好がそれぞれ一致する。

整合性を満たす学校側の部分選好 $P_{C}$ における部分選好グラ フ $G_{C}$ を考える。入次数が 0 である頂点の集合を $\mathcal{O}^{1}=\{s \in$ $\left.S \mid \operatorname{deg}_{G_{C}}^{-}(s)=0\right\}$ とする。 $G_{C}$ から頂点 $s \in \mathcal{O}^{1}$ を除いた誘導部分グラフを $G_{C}^{1}$ とし， $\mathcal{O}^{2}=\left\{s \in S \mid \operatorname{deg}_{G_{C}^{1}}^{-}(s)=0\right\}$ とす る．同様の操作を頂点がなくなるまで繰り返し， $\mathcal{O}^{3}, \mathcal{O}^{4}, \ldots$ としていく。以上により得られる順序付け $\mathcal{O}=\left(\mathcal{O}^{1}, \mathcal{O}^{2}, \cdots\right)$ を整合的順序 $\mathcal{O}$ という。学校側の部分選好が整合性を満たす場合，整合的順序 $\mathcal{O}$ が一意に決定する。

学校側の部分選好が整合性を満たす仮定の下で，LDA を考察する。LDA において，整合的順序 $\mathcal{O}$ に従って学生がイン タビューを行う場合，以下の定理が成り立つ。このとき，LDA の入力において，$O=\mathcal{O}$ である。

定理 2．整合性を満たす学校側の部分選好の下で，LDA は慎重かつインタビュー数が最小であるポリシーを実行する。

証明．紙幅の都合上，一部詳細は割愛する．学校 $c$ は，$P_{c}$ に おいて $\emptyset よ り$ 厳密に優先順位の低い学生 $s$ を受け入れないた め，$S_{c}$ に含まれる学生についてのみ，インタビューを行う順序を考える。また，$\left|S_{c}\right| \leq q_{c}$ を満たす学校 $c$ は，$S_{c}$ 内のす ベての学生を受け入れられるため，インタビューを行う学生の順序を考慮しない。一方，$q_{c}<\left|S_{c}\right|$ を満たす各学校 $c$ につい て考える。 $P_{C}$ が整合性を満たすことから，インタビューを行 う学生の順序 $O$ は整合的順序であり，$S_{c}$ 内の学生に関して $O$ と $P_{c}$ は一致する。したがって，LDA において $P_{c}^{l}$ 内の学生がインタビューを行うとき，$P_{c}^{l}$ より高い同格クラス内のす べての学生は割当が仮に決定している。LDA において，仮の割当が決定した学生が再度他の学校に申し込むことはないた め，その割当が最終的なマッチングとなる。定理1より，そ のマッチングは学生最適である。したがって，$q_{c}<\left|S_{c}\right|$ を満 たす各学校 $c$ において，$P_{c}^{l}$ より上位の同格クラス内のすべて の学生が，学生最適なマッチングにおける割当先に割り当てら れたとき，$P_{c}^{l}$ 内の学生のみがインタビューを行う。

学生 $s$ にとって学校 $c$ が達成可能であるとは，$s$ が $c$ にとっ て受け入れ可能であり，$\left|X_{c}^{\prime}\right|<q_{c}$ ，あるいは，$\left|X_{c}^{\prime}\right|=q_{c}$ かつ， $P_{c}$ において $X_{c}^{\prime}$ 内の最も好まない学生より厳密に下位でない

ことである．各学生 $s \in S$ の $P_{s}$ において，最終的なマッチ ング $X^{\prime}$ における $s$ の割当先 $c$ より厳密に下位でない，$s$ に とって達成可能な学校の集合を $\Omega_{s}$ とする。
$s$ が $c^{\prime} \in \Omega_{s}$ にインタビューを行っていないと仮定する。 $c^{\prime}$ は $c$ 以上の同格クラスに含まれるため，$c^{\prime} \succ_{s}^{\prime} c$ となる $\succ_{s}^{\prime}$ が存在しうる。これは LDA により出力されたマッチングが学生最適であることに矛盾するため，$s$ は $\Omega_{s}$ 内のすべての学校と インタビューを行う。

次に，sにとって達成可能でない学校 $\dot{c}$ を考える．$\dot{c}$ にとっ て $s$ が受け入れ可能でない場合，$P_{s}$ から $\dot{c}$ を削除する。ま た，$s$ が $w_{c}$ より厳密に下位である場合，$O$ に基づいて $s$ がイ ンタビューを行う時点で $w_{\dot{c}}$ は既にインタビューを行い，$\dot{c}$ に割り当てられている。また，$w_{\dot{c}} \in O^{j}$ は $\dot{c}$ が $X^{\prime}$ 内で最も好 まない学生であるため，LDA のステージ $j$ において，$\dot{c}$ の定員は満たされる。このとき，ステージ $j$ 内のステップ 4 の操作により，$P_{s}$ 内の同格クラスから $\dot{c}$ が削除される。したがっ て，$s$ がインタビューを行うとき，$\dot{c}$ は $P_{s}$ 内のどの同格クラ スにも存在しないため，$s$ は達成可能でない学校 $\dot{c}$ にインタ ビューを行わない。

また，$P_{s}$ において $c$ より厳密に低く順序付けられた学校 $\ddot{c}$ を考える．$s$ が $c$ にインタビューを行うとき，インタビュー $(s: \ddot{c})$ は行われない。また，$s$ の最終的な割当は $c$ となるた め，インタビュー $(s: \ddot{c})$ が行われることはない。したがって， $s$ は $\Omega_{s}$ 以外の学校とはインタビューを行わない。

以上より，LDA において，$s$ は $\Omega_{s}$ 内のすべての学校とイ ンタビューを行い，かつ，$\Omega_{s}$ 以外の学校とはインタビューを行わない。また，学生はインタビューを行った学校にのみ申し込むため，LDA は慎重かつインタビュー数が最小であるポリ シーを実行する。

## 5．結論

本論文では，部分的な選好下での多対一マッチング問題を考察し，各エージェントが潜在的に持つ選好をインタビューによ り明らかにすることで，学生最適なマッチングを求める LDA を新たに提案した。また，インタビューを行う回数を必要最小限にするために，学校側の部分選好に関する既存の仮定を一般化した整合性を提案し，その下でインタビュー回数を最小にす ることを示した。

今後の課題としては，インタビュー数の最小化に関する整合性の特徴づけや，計算機実験によるインタビュー数の定量的な評価が挙げられる。

## 謝辞

本研究は JSPS 科研費 JP17H00761 の助成を受けたもので す．深く感謝いたします。

## 参考文献

［Gale 62］Gale，D．and Shapley，L．S．：College Admissions and the Stability of Marriage，The American Mathemat－ ical Monthly，Vol．69，No．1，pp．9－15（1962）
［Rastegari 13］Rastegari，B．，Condon，A．，Immorlica，N．， and Leyton－Brown，K．：Two－sided matching with partial information，in Proceedings of the 14 th ACM Conference on Economics and Computation，pp．733－750（2013）


[^0]:    ＊1 $i$ がある順序付け $\mathcal{P}$ の要素の一つであるとき，$i \in \mathcal{P}$ と表すこ とにする。
    ＊2 $O^{k}$ 内の学生の順序は，メカニズムの出力に影響しない。

