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Spectrum-diverse Unified Neuroevolution Architecture (SUNA) is currently the most adaptive neuroevolution
methods which is able to tackle different problems efficiently. This is possible by making use of (a) a unified
neural model which allows a greater representation power together with (b) a new diversity metric called spectrum
diversity which enables it to search in the huge search space created by the unified neural model. However, many
questions remain unanswered regarding the feasibility of layers and other improved structures as well as improved
diversity measures. Here we provide a study over a variation of the diversity measure. In other words, we create
a connection-aware spectrum diversity. Experiments show that a connection-aware spectrum diversity allows for
better results to arise over the course of evolution. This is justified by the fact that neural networks with a low
number of connections are kept even when increasing the connections might improve slightly the results. Moreover,
these networks themselves are easier to improve than ones with a high number of connections.

1. Introduction

Neuroevolution allow powerfull models to be evolved.

This models are essentially not limited in any way. They

can be non-differentiable, with circular feedback, chaotic

dynamical systems, among others. In fact, SUNA re-

cently proposed a unified neural model that unified most

if not all of the features of state-of-the-art neural net-

works [Vargas and Murata2017]. I.e., an unified neural

model with neuromodulation, activation/inhibition neu-

rons, slow/fast neurons, feedback, circular feedback, mem-

ory states, different activation function, among other fea-

tures. These set of features allowed the algorithm to find

the best set of features as well as the topology and weights

for a certain problem, allowing for fast and accurate adap-

tation.

Unified neuron models may have all the features that

would able a network to better adapt to a specific sce-

nario. However, a consequence from unified neuron mod-

els is a huge search space. Spectrum-diversity was pro-

posed and shown capable of dealing with such a huge

search space. This was possible using niching by spec-

trum and not allowing candidate solutions to compete with

other solutions from different niches (In fact, this idea was

called niched/relative fitness because the fitness is indeed

separated and dependent on the niche (or subpopulation)

[Vargas et al.2013], [Vargas et al.2013], [Vargas et al.2014],

[Vargas et al.2015b]. Isolated subpopulations solve many

conflicts which lie inside algorithms with a single population

(panmictic populations)[Vargas et al.2015a].) However, the

spectrum-diversity used did not take the number or types

of connections into account. Thus it may create a tendency

towards networks with a high number of connections.

In this work, a connection-aware spectrum diversity is in-

vestigated. Recently, spectrum-diversity showed that even

a small population could deal with large search spaces if the

spectrum of the candidate solution is considered instead the
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candidate solution itself. Here we investigate the addition

of connection to the normalized equation of the spectrum.

1.1 Spectrum-diverse Unified Neuroevolution
Architecture

The unified neural model (UNM) has allows for a great

flexibility to deal with various problems. However, it also

means that it has many dimensions and a huge search space.

Spectrum-diverse Unified Neuroevolution Architecture

(SUNA) [Vargas and Murata2017] tackled the problem of

search in such a huge search space by proposing a new diver-

sity method called spectrum-diversity. Spectrum-diversity

divide the candidate solutions into niches (subpopulations)

based on their spectrum and disallow competition between

niches (subpopulations). A spectrum is built by extracting

from UNMs important information such as the numbers of

neurons for each neuron types, number of neurons for each

type of activation function, number of neurons with each

adaptation speed, among other features. SUNA treat net-

works with only its spectrum not their structure to reduce

dimensions of search space. Moreover, this also define the

novelty in terms of approaches (which tools are used in the

solution) rather than the solution (the detailed methods

and steps). This type of novelty is a new paradigm for

neuroevolution.

For evaluating the spectrum, SUNA uses the novelty

map [Vargas and Murata2017]. Novelty map is a table to

keep most novel elements. In this map, the novelty of a

node is considered as the distance from other nodes. The

process to add a new item is shown below. Consider P the

size of the novelty map and |P |max is the maximum popu-

lation of the map. The dynamic is described explicitly as

follows:

1. If the current population number |P | ≤ |P |max, add

the new item.

2. In the population |P | > |P |max,

(a) If the shortest distance between the new item and

elements in the current map is longer than the
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longest distance between elements in the current

map, one of elements has the shortest distance is

removed from the map and the new item is added

to the map.

(b) Else then, the current elements is kept and not

to add the new item to the map.

SUNA divides the candidate solutions into subpopula-

tions using a novelty map [Vargas and Murata2017] which

evaluate their uniqueness and classify into a given num-

ber of classes with respect to their difference in spectrum.

In each evolution step, all candidate solutions are evaluated

and for each subpopulation only the candidate solution with

the highest fitness survive for the next generation. The sur-

viving candidate solutions are selected to mutate for mak-

ing the next population. In other words, the architecture

judges the likenesses between networks and gives chances

based on the spectrum, allowing different approaches to co-

evolve even when there are gaps in fitness.

2. Connection-aware SUNA

In this section both the definition and the settings of the

proposed method is discussed in detail.

2.1 Connection Spectra
In this paper, the addition of number of connections in

the spectrum calculation of the original SUNA algorithm is

considered. In the original SUNA, the spectrum is made of

a histogram in which every bin is the number of nodes which

share the same activation function. This simple spectrum

contributes to preserving its diversity and is shown to work

overall in the original paper. However, here we raise the hy-

potheses if this simple mechanism may not cause early on a

high number of connections to appear. By adding connec-

tion count to spectra, it is possible to preserve the diversity

regarding the number of connection as well. That is, we

expect that this modification would allow simple networks

to survive easierly and enable SUNA to find more compact

solutions.

However, the careless addition of the number of connec-

tions to the formula causes the spectrum to become unbal-

anced, i.e., to easily become dominated by the huge number

of connections which are usually more numerous than neu-

rons. Consequently, when the difference between spectra is

calculated, this would cause the diversity to focus on con-

nections alone. In other words, some type of normalization

is needed. To enable spectrum-diversity to work indepen-

dent of the scale of connection and neurons the following

normalization is added:

spectrantype =
nntype

N inModule
(1)

spectraconnect =
nconnect −Nconnect

min

Nconnect
max

, (2)

where nntype is the number of neurons for each type of neu-

ron (identity, threshold, random, sigmoid and control) as

well as slow adapting neurons (i.e. neurons whose adap-

tation speed is more than one). nconnect is the number of

neurons of a type or connections and Nconnect
min and Nconnect

max

are the minimum or the maximum number of the same item

of n calculated over all of the individuals in the current pop-

ulation. In connection-aware SUNA, the spectrum of every

agent has seven lengths totally and the given normaliza-

tions all values for each bin have a maximum of 1 and a

minimum of 0.

3. Experiments and Discussion

Here two experiments will be run over the proposed

connection-aware SUNA.

3.1 Experiment 1: Learning Caesar Cipher

Figure 1: Result of origin, connection-aware models in Cae-

sar Cipher. Lines are the mean of 100 trials. Variances are

standard deviation.

Caesar cipher is the an encryption in which each original

letter (message) is shifted by a certain number (key). The

objective of the agent is to decode the cipher. In this en-

vironment, each agent receives as input both the original

letter (message) coded as an integer and the key. The aim

of the agent is to have an output that matches the output

of the cipher.

The range of letter number and key number were from

0 to 25. Each trial consists of 10000 steps. The letter is

randomly decided each step while the key is updated every

100 steps. In each step, reward was calculated based on the

agent’s action a as −|a− (letter + key)|. All of the agents

were evaluated using the sum of reward in whole steps.

Regarding the results, both original and connection-

aware SUNA reached the maximum score of 0 at almost

same trials (Fig. 1). However, the original model presented

some instability after the convergence in comparison with

the connection-aware version. Here we raise the hypotheses

that fewer connections may lead to less complex solutions
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and consequently more stable ones. In fact, it will be shown

in the next Section that the preservation of networks with

fewer connections is achieved by connection-aware SUNA

while SUNA has a tendency for high number of connec-

tions.

Figure 2: Result of origin, connection-aware models in Cae-

sar Cipher. Lines are the mean of 100 trials. Variances are

standard deviation.

3.2 Experiment 2: Learning Double Key Cae-
sar Cipher

In this experiment, the number of the key used in the

Caesar Cipher experiment was divided into two numbers

with their multiplication resulting in the original key. The

range of each key numbers was set from 1 to 5 (i.e.,
√
25).

The number of the message and other parameters was set

to be the same as the Caesar Cipher experiment. All of

the 100 individuals (agents) of the connection-aware model

reached the maximum score 0. However, 11 agents of the

original SUNA did not.

One of the simplest solutions can be seen in Figure 3.

This is a simple and effective solution, however finding it

requires a small number of neurons and connections. There-

fore, it makes it harder for the original SUNA to reach

such solutions in comparison with connection-aware SUNA.

Moreover, fewer connections also force the number of func-

tional neurons (i.e. connected neurons that have some in-

fluence in the network’s behavior) to drop therefore it is

also indirectly related.

4. Conclusions

This paper proposes a variation of SUNA which enables

its diversity to be aware of connections. The experiments

demonstrate that such a modification allows SUNA to pre-

serve candidate solutions which have are a more compact

Figure 3: Typical topology of the network solves the Caesar

Cipher with divided 2 keys. Key1 and key2 are multiplied

as neuromodulation and added to message.

topology. At least for the experiments here, such a modifi-

cation increased the quality of solutions as well as learning

speed of SUNA.
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