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This paper proposes Evolutionary Multi-objective Optimization (EMO)-based Adversarial Example (AE) design
method that performs under black-box setting. Previous gradientbased methods produce AEs by changing all
pixels of a target image, while previous EC-based method changes small number of pixels to produce AEs. Thanks
to EMO s property of population based-search, the proposed method produces various types of AEs involving
ones locating between AEs generated by the previous two approaches, which helps to know the characteristics of
a target model or to know unknown attack patterns. Experimental results showed the potential of the proposed
method, e.g., it can generate robust AEs and, with the aid of DCT-based perturbation pattern generation, AEs
for high resolution images.
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(a) Original (clean)
image I1

(c) Perturbed image
I1 + ρ by direct
method

(e) Perturbed image
I1+ρ by DCT-based
method

2: 1: AE

1: 1: AE

C (I1 + ρ)
C (I1) DCT

1st Tabby: 60.8% Envelope: 13.6% Coyote: 35.2%
2nd Tiger cat: 30.4% Jigsaw puzzle: 10.0% Wallaby: 16.0%
3rd Egyptian cat: 7.4% Carton: 9.7% Wombat: 13.1%
4th Doormat: 0.4% Wallet: 9.7% Hare: 4.5%
5th Radiator: 0.2% Door mat: 9.2% German 4.5%

shepherd
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2: 2

I2 electric guitar acoustic guitar, Violin, Banjo, cello
I3 Plastic bag mailbag, sleeping bag
I4 Promontory Seashore, Lakeside, Cliff, cliff dwelling, Val-

ley, Breakwater
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3: 2: AE

(a) I2

C(I2) C(I2 + ρ)

1st electric guitar: 96.7% Eft: 19.7%

2nd acoustic guitar: 2.7% Banded gecko: 11.3%

3rd pick: 0.4% European

fire salamander: 10.2%

4th violin: 0.1% Common newt: 10.1%

5th banjo: 0.0% alligator lizard: 9.7%

(b) I3

C(I3) C(I3 + ρ)

1st Plastic bag: 96.2% sock: 22.5%

2nd brassiere: 1.0% brassiere: 8.6%

3rd Toilet tissue: 0.2% pillow: 7.8%

4th diaper: 0.2% diaper: 7.8%

5th sulphur-crested

cockatoo: 0.2% handkerchief: 7.8%

(c) I4

C(I4 C(I4 + ρ)

1st Promontory: 96.6% alp: 17.8%

2nd seashore: 1.7% Irish wolfhound: 8.8%

3rd cliff: : 1.4% marmot: 7.5%

4th bacon: 0.2% timber wolf: 7.4%

5th lakeside: 0.0% bighorn: 7.4%
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