目的関数の探索難易度を考慮した探索法に関する検討

A study on search method considering search difficulty of objective functions

丹羽健斗＊1
吉川大弘 ${ }^{* 1}$
Kento Niwa Tomohiro Yoshikawa

＊1名古屋大学工学研究科
Graduate School of Engineering Nagoya University

Abstract

In real－world multi－objective problems，the characteristics of objective functions and their search difficulties are different one another．Therefore，when search resources are evenly allocated like MOEA／D，the objective functions with low search difficulty are preferentially optimized while those with high search difficulty are not optimized．In real－world problems，it is better to search equally for each objective function．In this paper，we propose a method to allocate search resources based on their search difficulties．We performed quantitative evaluation on optimization balance between objective functions on 2 and 4 objective optimization problem．The results of experiments showed the proposed method could perform more balanced search than conventional methods．

1．はじめに

近年，進化計算の工学的応用が盛んとなっている［Coello 04， Dasgupta 13］．これらの実問題においては，ベンチマーク問題とは異なり，目的関数ごとの特性により探索の難易度に差が生じることがある，その際，探索難易度が低い目的関数の最適化が進む一方で，探索難易度の高い目的関数の最適化が進み づらい。この結果，探索の進度に偏りが生じる可能性がある。 しかし，現在，多目的進化計算手法の評価指標として最も代表的な HV（Hyper Volume）［Zitzler 98，Liu 16］などにおいて は，探索難易度が低い目的関数に積極的に探索資源を割き，探索を進めることが，探索難易度が高い目的関数の探索を進める より高い評価となる場合がある。

しかし，実問題において，目的関数として用いられている以上，各目的関数が均等に最適化されることが望ましい。つまり，各目的関数の探索進度に応じて，探索の進んでいない目的関数に動的に探索資源を割り当てる必要がある［岸上 16，Harada 17］．動的に探索資源を割り当てる手法としては，Zhang らによっ て提案された MOEA／D－DRA［Zhang 09］や，原田らによって提案された MOEA／D－AWV［Harada 17］がある。これらの手法［Harada 17，Zhang 09］はともに，MOEA／D［Zhang 07］を ベースとした手法である。

MOEA／D－DRA［Zhang 09］では，各重みベクトルの更新量 に従って，更新されている方向，つまり，探索難易度が低い領域へ重点的に探索資源が割り当てられる。これは，HV の値を大きくすることには有効であるが，上述した目的とは逆のパ フォーマンスとなる．一方，MOEA／D－AWV［Harada 17］で は，各サブ領域でのパレート解の所属数に従い，パレート解の所属数が多い，つまり，探索難易度が低いサブ領域から探索難易度が高いサブ領域へ重みベクトルを移動させることで，探索難易度が高い領域へ重点的に探索資源を割り当てている。この手法では，サブ領域の数というパラメータを設定する必要はあ るが，その目的は本稿での目的と完全に合致する。

本稿では，上述の目的の下，MOEA／D－DRA で用いられて いる更新量に着目する．MOEA／D－DRA においては，更新さ

連絡先：丹羽健斗，名古屋大学大学院工学研究科，名古屋市千種区不老町，052－789－2793，niwa＠cmplx．cse．nagoya－ u．ac．jp

れている領域へ積極的に探索資源が割り当てられるが，本稿で は，この特徴とは反対に，更新されていない領域へ積極的に探索資源を割り当てることで，各目的関数間の探索難易度に差が ある問題においても，各目的関数を均等に最適化する手法を提案する．さらに本稿では，最適化の均等さを定量的に評価でき る新たな指標を提案する．実験を行い，提案手法が従来手法と比較して，各目的関数間のバランスが取れた探索が行えるこ と，さらにそれを定量的に比較•評価できることを示す。
なお，MOEA／D－DRA は，前述した高い HV を得ることを目的としたものではなく，どちらかといえば，パレートフロン トに到達した探索方向の探索資源を，解の改善の余地がある方向に分配するための手法である。本稿で想定する問題は，与え られた評価回数（世代）の範囲内では，探索難易度に差はある ものの，すべての方向について改善の余地があり，パレートフ ロントへの到達は前提としない。

2．従来手法

2．1 MOEA／D－DRA

MOEA／D－DRA は，MOEA／Dをベースに，各ベクトルヘ の探索資源の割り当てを動的に変化させることで，効率的な探索を行い，収束性を向上させる手法である。従来の MOEA／D では，すべての重みベクトルに所属する個体に対して，親個体 となる機会が均等に与えられるため，すべての目的関数に対し て均等に探索資源が割り当てられる。しかし，MOEA／D－DRA においては，各重みベクトルの更新量を指標に，より更新され ている重みベクトルに所属する個体が親個体となる機会を増 やすことで，探索資源の割り当てを変更している．MOEA／D－ DRA の探索資源割り当てにおけるアルゴリズムを以下に示す。 なお以下は，最小化問題の場合である。

更新判断

各重みベクトル i が更新されているかを判別するために，更新量 Δ_{i} と更新判断指標 π_{i} を用いる。

$$
\begin{align*}
\Delta_{i} & =\frac{\text { old function value }- \text { new function value }}{\text { old function value }} \tag{1}\\
\pi_{i} & = \begin{cases}1 & \text { if } \Delta_{i}>0.001 \\
\left(0.95+0.05 \frac{\Delta_{i}}{0.001}\right) \pi_{i} & \text { otherwise }\end{cases} \tag{2}
\end{align*}
$$

ここで，old function value は 50 世代前のスカラー化関数の出力，new function value は現世代のスカラー化関数の出力である。すなわち，更新判断指標 π_{i} は，各重み ベクトルが， 50 世代の間に一定量更新された場合 1 とな り，更新されなかった場合は小さくなっていく。

親個体選択

MOEA／D－DRA においては，1世代の評価回数，つまり，交叉によって新たに作られる個体数は個体数 $/ 5$ となって いる。したがって，一部の個体のみが親個体となる機会 を与えられ，その親個体を選択する必要がある．親個体 （交叉の機会が与えられるベクトル）としては，1 つの目的関数のみを考慮する重みベクトルに所属する個体と， π_{i} に基づくトーナメント選択（トーナメントサイズ 10） によって選択された重みベクトルに所属する個体が選択 され，それぞれそれらの近傍ベクトルに所属する個体と で交叉が行われる。つまり，式（2）に基づき，更新され た重みベクトルに所属する個体が優先して親個体として選択される。また MOEA／D－DRA では，交叉には DE （Differential Evolution）が用いられる。

2.2 MOEA／D－AWV

MOEA／D－AWVは，MOEA／Dをベースに，重みベクトル の＂分布＂を動的に変化させることで，幅広く均一なパレート解を獲得することを目的とした手法である。従来のMOEA／D では，重みベクトルを評価値空間上に均一に分布させることで， すべての目的関数に対して均等に探索資源を割り当てている。一方，MOEA／D－AWV においては，評価値空間をいくつかの領域に分割し，所属するパレート解の数が少ない，つまり探索 が進んでいない領域に重みベクトルを重点的に分布させるこ とで，探索資源の割り当てを変更している。MOEA／D－DRA の探索資源割り当てにおけるアルゴリズムを以下に示す。

Step1 貢献度算出
領域 $i(i=1,2, \ldots, N)$ に所属するパレート解の数をカウ ントし，これを領域 i の貢献度 C_{i} とする。

Step2 難易度算出
領域の難易度 $R C_{i}$ を，貢献度の逆順で割り当てる。つま り，貢献度が最も高い領域の難易度の値を，貢献度が最も低い領域の貢献度の値とする。ただし，文献［Harada 17］ では明記されていないが，本稿では，貢献度が同じ領域 に違う難易度が割り当てられた場合は，それらの難易度 の平均値を割り当てることとする。

$$
\begin{equation*}
R C_{\text {sort_arg_min }[i]}=C_{\text {sort_arg_max }[i]} \tag{3}
\end{equation*}
$$

Step3 割り当てベクトル数算出
領域の難易度 $R C_{i}$ から，割り当てるベクトルの本数 $A W V_{i}$ を算出する。なお，式（4）において，$S W V$ は再配置され るベクトルの総数（総ベクトル数 - 領域数 +1 ）である。

$$
\begin{equation*}
A W V_{i}=\frac{R C_{i}}{\sum_{i=1}^{N} R C_{i}} \times S W V \tag{4}
\end{equation*}
$$

Step4ベクトル割り当て
各領域において，Simplex－lattice 法により，均等にベク トルを配置する。

3．提案手法

3.1 アルゴリズム

提案手法の目的は，目的関数間に探索難易度の差がある場合でも，探索資源の割り当てを変更することにより，すべての目的関数に対して，均等に最適化がなされることである。これ を実現するために，2．1節で述べた，MOEA／D－DRA の更新量を指標とした探索資源割り当て機構に着目する．MOEA／D－ DRA では，更新された重みベクトルに所属する個体を優先し て親個体として選択することで，収束性を向上させている。そ こで，提案手法では，更新判断指標に基づき，更新されていな い重みベクトルに所属する個体を，優先して親個体として選択 することで，探索難易度が高い領域へ探索資源を割り当て，均等な最適化を行う。以下に，提案手法のアルゴリズムを示す。

更新判断

更新量 Δ_{i}（式（1））と更新判断指標 π_{i}（式（2））を MOEA／D－DRA と同様に算出する。

親個体選択
MOEA／D－DRA とは異なり，負の更新判断指標 $-\pi_{i}$ に よるトーナメント選択（トーナメントサイズ 10）によっ て，親個体を選択する。この選択により，探索難易度が高い領域に対する探索資源割り当てが増加し，更新が進 んでいない方向への探索が進むことが期待される。

3.2 HV を用いた最適化バランス指標

多目的進化計算手法の代表的な評価指標である HV は，パ レート解群の多様性，収束性を 1 つの指標で評価可能である ため，極めて優れた指標であるといえる．しかし，HV の値の みでは，個体群が各目的関数をバランスよく最適化している のか，特定の目的関数のみに偏った最適化を行っているのかを判断することはできない。そのため，図 1 のように，目的関数間でバランスの取れた個体 A を求めるよりも，探索しやす い目的関数のみを最適化した個体 B を求めた方が優れている （HV の値が大きい）と評価されることがある，これは，実問題において，各目的関数を均等に最適化したいという要求に対し，HV のみでは適切に指標化できていないことを表してい る。そのため，例えば HV に基づいて，最も探索性能の高い手法を用いて探索を行ったとしても，必ずしも設計者の要求を満たした解が得られるとは限らない。そこで本稿では，HV を用いた最適化バランス指標（以下，Balanced－HV と表記）を以下の手順で算出し，手法の評価に用いる。Balanced－HV は， 0 から 1 の値をとり，大きいほどバランスが取れたパレート解 を獲得できていることを表す。ただし本 Balanced－HV は，各目的関数の均等性のみを指標化したものであり，探索性能の評価には，従来の収束性と多様性の評価指標である HV などと ともに用いる必要がある。また，本指標は，各目的関数が適切 に 0 から 1 の値に正規化できることを前提とする。

Step1 HV の算出
すべての目的関数を， 0 から 1 の最大化問題に変換する。 その後，個体群の HV を算出する。（図 2（a））

Step2 対称点を追加した HV の算出
すべての目的関数を均等に最適化する方向をバランス方向（適切に正規化が行えているならば，$(1,1, \ldots, 1)$ 方向） と定義し，各パレート解について，バランス方向に対して線対称になるように個体を追加する。そして，追加され た個体群を加えた全個体群のHV を算出する。（図2（b））

図 1：HV による偏った探索の評価

図 2：HV を用いた最適化バランス指標（Blanced－HV）

ただし， 3 次元以上の場合，対称点が正規化範囲の 0 か ら 1 から外れる可能性がある。このとき，対称点は疑似的に正規化範囲内に移動させた点を用いる。（図3）

Step4 Balanced－HV の算出
Step2 で算出した HV に対する，Step1 で算出した HV の比率を算出し，Balanced－HVとする。

4．実験

4.1 実験設定

本稿では， 2 目的および 4 目的問題として複数車種の同時最適化問題［小平 17］を用いる。この問題は，車格の異なる 3 車種， SUV－Car（SUV），Large－Car（CDW），Small－Car（C5H）を対象とした，54個の制約を持つ最適化問題である。目的関数は，車種の重量と，車種間で共通して使用できる部品数である． 2目的問題では， 3 車種の重量の和と共通部品数を目的関数とし， 4 目的問題では，各車種の重量（3目的）と共通部品数を目的関数とした。実験のパラメータは以下の通りである。

表1：実験時のパラメータ

	2 目的	4 目的
個体数	100	120
評価回数	300,000	
近傍個体数	10	
交叉	$\mathrm{SBX}\left(\eta_{c}=10, P_{c}=1.0\right)$	
突然変異	$\mathrm{PM}\left(\eta_{m}=10, P_{m}=1 / 222\right)$	
スカラー化関数	重み付き Tchebycheff	
領域数（AWV $)$	$2,4,6,8,10$	-
試行回数	11	

図 3：疑似対称点の追加

図 4：2目的問題の結果

比較手法は，MOEA／D，MOEA／D－DRA，MOEA／D－ AWV，提案手法の 4 手法である。ただし，MOEA／D－AWV は，［Harada 17］において 2 目的問題以外への適用指針が示さ れていないため， 2 目的問題でのみ用いる。評価は，全試行 において獲得されたパレート解の分布と HV，そして 3.2 で示した Balanced－HV によって行う。

4.2 実験結果（2目的問題）

図4（a）に，300，000評価時点での， 4 手法それぞれについ て，各試行（11試行）で得られたパレート解をすべて合わせ たものを示す。これらの図において，$f_{1}, ~ f_{2}$ は正規化され，破線に近い，あるいは破線に対して対称にパレート解が獲得さ れているほど，バランスが取れた探索がされたことを表して いる。図4（a）から，MOEA／D は他の手法に比べて探索が進 んでおらず，また f_{2} に偏った探索を行ったことがわかる．ま た，MOEA／D－DRA は，MOEA／D よりも収束性が向上して いるものの，f_{2} により強く偏った探索を行っている．さらに， MOEA／D－AWV は，幅広く均一なパレート解の獲得を目的と しているが，どの領域数においても，MOEA／D－DRA ほどで はないものの，依然，f_{2} に偏った探索を行っていることがわ かる。これに対し，提案手法では， 2 つの目的関数の探索進度 において差があまり見られず，バランスの取れた探索を行った ことがわかる。提案手法以外が f_{2} に偏った探索を行っている ことから，この問題では f_{1} に比べ，f_{2} の探索難易度が低いと考えられる。
次に，図 $4(\mathrm{~b})$ に，各手法における HV の平均値と標準偏差を示す。図4（b）から，提案手法よりも MOEA／D－DRA や MOEA／D－AWV の方が高い HV を示していることがわかる。

（a）各手法の HV
（b）各手法の Balanced－HV

図 5： 4 目的問題の結果

MOEA／D－DRA では，1．章で述べた通り，探索難易度の低い領域へ多くの探索資源を割り当てることで，収束性が向上した結果であると考えられる。つまり，バランスの取れた探索より も，偏った探索をあえて行うことで，HV での指標上は優れて いると判断されることを表している．また，MOEA／D－AWV は，パレート解の分布が広がるように探索を行う機構が有効に働き，HV が向上したと考えられる．

最後に，図 4（c）に，Balanced－HV の平均値と標準偏差を示 す．Balanced－HV の値から，提案手法が，他の手法に比べて均等な探索を行ったことがわかる。この結果は図 4（a）の結果 と一致していることから，Balanced－HV を用いることで，パ レート解の各目的関数への均等さを定量的に評価できていると考えられる。また，本指標の算出方法は基本的には目的関数の数（次元数）に依存しないため，可視化できない高次元の探索 においても，各目的関数への均等さを定量的に表すことができ ると考えられる。

4.3 実験結果（4目的問題）

図 5（a）に，各手法における HV の平均値と標準偏差を示 す。図5（a）から，MOEA／D－DRA が最も優れたHV を示し， MOEA／D と提案手法はほぼ同程度であることがわかる。これ は，4．2 でも述べたように，MOEA／D－DRA の特徴が表れた結果であると考えられる。

次に，図 5（b）に，Balanced－HV の平均値と標準偏差を示 す．Balanced－HV の値から，提案手法が，他の手法に比べて均等な探索を行ったことがわかる。この結果から，提案手法は HV ではMOEA／D－DRAに及ばないものの，各目的関数を均等に最適化するという点において，従来手法よりも優れている ことが確認できた。

5．まとめ

本稿では，目的関数間に探索難易度の差がある場合につい て，バランスの取れた探索を行うために，難易度の高い領域に より多くの探索資源を割り当てる手法を提案した。提案手法 では，MOEA／D－DRA をベースに，更新されていない重みベ クトルに所属する個体を優先して親個体として選択すること で，難易度の高い領域への探索資源の割り当てを増やしてい る．さらに本稿では，各目的関数に対する最適化の均等さを定量的に評価できる新たな指標として，HV を用いたバランス指標 Balanced－HV を提案した。実験では，複数車種の同時最適化問題に対して，提案手法を適用し，パレート解の可視化結果 と Balanced－HV によって，バランスの取れた探索を行うこと ができることを示した。今後は，様々な性質を持つ多数目的問題における性能比較を行っていく予定である。

参考文献

［Coello 04］Coello，C．and Lamont，G．：Applications of Multi－objective Evolutionary Algorithms，Advances in natural computation，World Scientific（2004）
［Dasgupta 13］Dasgupta，D．and Michalewicz，Z．：Evolu－ tionary Algorithms in Engineering Applications，Springer Berlin Heidelberg（2013）
［Harada 17］Harada，K．，Hiwa，S．，and Hiroyasu，T．：Adap－ tive weight vector assignment method for MOEA／D，in 2017 IEEE Symposium Series on Computational Intelli－ gence（SSCI），pp．1－9（2017）
［Liu 16］Liu，H．，Chen，L．，Zhang，Q．，and Deb，K．：An evolutionary many－objective optimisation algorithm with adaptive region decomposition．，in 2016 IEEE Congress on Evolutionary Computation，pp．4763－4769（2016）
［Zhang 07］Zhang，Q．and Li，H．：MOEA／D：A Multi－ objective Evolutionary Algorithm Based on Decomposi－ tion，IEEE Transactions on Evolutionary Computation， Vol．11，No．6，pp．712－731（2007）
［Zhang 09］Zhang，Q．，Liu，W．，and Li，H．：The perfor－ mance of a new version of MOEA／D on CEC09 uncon－ strained MOP test instances，in 2009 IEEE Congress on Evolutionary Computation，pp．203－208（2009）
［Zitzler 98］Zitzler，E．and Thiele，L．：Multiobjective opti－ mization using evolutionary algorithms－A comparative case study，in Parallel Problem Solving from Nature－ PPSN V，pp．292－301（1998）
［岸上16］岸上利裕，吉川大弘：多目的最適化問題における探索難易度を考慮した目的関数に対する重み付けの検討，2016年度人工知能学会全国大会，2F3－4（2016）
［小平 17］小平 剛央，鈒持 寛正，大山 聖，立川智章：応答曲面法を用いた複数車種の同時最適化ベンチマーク問題の提案，進化計算学会論文誌，Vol．8，No．1，pp．11－21（2017）

