多人数ゲームにおける，集団に対する予想の分析 Analysis of strategy prediction for participants group in a multiple－players game

井上 輝義＊${ }^{* 1}$
Teruki Inoue

福田玄明＊1
Haruaki Fukuda

植田一博 ${ }^{* 1}$

Kazuhiro Ueda

＊1 東京大学•大学院総合文化研究科
Graduate School of Arts and Sciences，The University of Tokyo

Abstract

In a game situation where her／his gain is affected by their strategies，a person needs to make decisions with predicting the strategies of others．In a multiple－players game，however，it is difficult to read all of the strategy by each player other than oneself，and it may be possible that some heuristic methods are used to win the game，which has not been investigated．We used Conflict Game to identify how each player predicted the strategies of other players by comparing with the outputs of several models for decision making．As a result，it is suggested that a player did not predict all the strategies by other players．

1．はじめに

1.1 研究背景

日常生活において，我々は他者の存在を意識しながら意思決定を求められる状況に遭遇する。このような状況は，ゲーム理論で数学的に定式化され，多くの研究が行われてきた。ゲーム理論では，ゲームのプレイヤーは利己的であり，最適な戦略を決定する上で十分な計算能力を持っていることが仮定される。 しかし，ゲーム理論は，実際の人間の行動を説明するには不十分であることが行動実験によってわかってきた。その原因として，人間は認知的限界があり，ゲーム理論が仮定するような計算能力を持ち合わせていないということが挙げられている （Camerer，2003）。特に，推論の深さに関する限界については， レベル k 理論や Cognitive Hierarchy Theory（CHT）（Camerer，Ho， \＆Chong，2003）など，いくつかの理論が提案されている。

ゲーム実験において題材となるゲームは， 2 人ゲームが多い。 さらにプレイヤーの人数が 3 人， 4 人と増えていくと，他プレイヤ一の戦略の予想を立て，それに基づいて自分の戦略を決定す ることが難しくなる。上に挙げた CHT などでは，各プレイヤーが，他のプレイヤーはすべて同じようなプレイヤーだと想定する，と仮定している。しかし，多人数ゲームにおいて，本来は他プレイ ヤー1 人ひとりのプレイヤーの戦略を予想すべき状況で，実際 に人がどのように予想を形成しているのかはあまり検討されてこ なかった。多人数ゲームの代表例としては p－beauty contest game（Nagel，1995）が挙げられる。しかしこのゲームでは，他プレ イヤー 1 人ひとりについて戦略を予想する必要がなく，全体の平均値を予想すればよいという特徴がある。つまり，実際に他のプ レイヤーがどれくらいいるかということは，本質的に影響しないゲ ームである。同様に，多人数の他者が存在する市場の研究（De Martino et．al ，2013）でも，多人数の相手の戦略をどのように想定しているかを直接的には問題にしていない。
多人数ゲームにおいて，本来は他プレイヤー 1 人ひとりのプレ イヤーの戦略を予想すべきであるが，それは認知的に困難なた め，他の方法を用いて可能性が考えられるが，実際にそのよう な検討を行った研究はない。本研究では，他プレイヤー1 人ひ とりのプレイヤーの戦略を予想すべき 4 人ゲームを実施する。そ して，他プレイヤーの集団に対して，予想の立て方が違う意思決定モデルを立てる。具体的には，ランダムな相手を想定する

[^0]のもの， 3 人の相手を想定するもの， 1 人の相手を想定するもの の 3 つである。これらのモデルと，参加者の行動を照らし合わせ ることで参加者がどのように相手の戦略を考慮しているのかを検討する。

1．2 Conflict Game

本研究では，本来は他プレイヤー1 人ひとりのプレイヤーの戦略を予想すべきゲームを実施する。そのようなゲームにおいて，実際の人間は，特定の相手を想定しているのか，それとも多様 なタイプの相手を想定しているのかを，意思決定モデルを用い て検討した。
本研究で用いたゲームについて説明する。本稿では，このゲ ームを Conflict Gameと呼ぶことにする。各プレイヤーには 1 か ら 10 の数字が与えられる。これらの数字を用いて， 1 point から 10 pointを取り合う。各プレイヤーは， 1 pointから 10 point それ ぞれについて，手持ちの数字から 1 つずつ数字を point に割り当てる。つまり，各プレイヤーは 1 から 10 の数字の point への対応を定める。この対応がこのゲームの戦略になる。また，各 point について，各プレイヤーが対応させた数字を，その point の bet と呼ぶことにする。各プレイヤーの手をまとめ，得点計算を次の ように行う。
a． 1 から 10 の任意の point について，最も大きい数字を割 り当てたプレイヤーが 1 人だった場合，そのプレイヤー がその pointを獲得する。
b．該当するプレイヤーが 2 人以上いた場合，誰もその point を獲得できない。
例えば，表1のようなゲームでは，1～3 point は上記のaに該当し，プレイヤーBに point が与えられる。一方，4，5，8，10 point は上記の b に該当するので，どのプレイヤーもこれらの pointを獲得することはできない。

表 1：Conflict Game の対戦例										
point	1	2	3	4	5	6	7	8	9	10
A	1	2	3	4	5	6	7	8	$\underline{9}$	10
B	4	5	$\underline{6}$	7	8	9	$\underline{10}$	3	2	1
C	1	4	5	7	8	10	9	2	3	6
D	2	3	4	5	6	7	9	8	1	10

Conflict Game では， 1 人の他プレイヤーと数字が被った時点 で pointを獲得することができなくなる。そのため，本来であれば複数人の他プレイヤーの戦略をそれぞれ考慮して，自分の手を決定する必要がある。しかし，相手が 3 人いるといら状況で， 1 人

ひとりの戦略を予想することは困難だと考えられる。そこで，何 か別の方法によって予想を形成し，手を決定していることが考え られる。本研究では，Conflict Gameにおける意思決定モデルと して，ランダムに手を決定する相手を想定するのもの， 1 人の相手を想定するもの， 3 人の相手を想定するものの 3 つを作る。こ れらのモデルと，参加者の行動を照らし合わせることで，参加者 がどのようにして相手の戦略を考慮しているのかを検討する。

2．実験

2.1 実験手続き

参加者 4 人を 1 つのグループとして実験を行った。参加者に は， 2 種類のゲームをプレイしてもらった。1 つは前述した Conflict Gameである。もう一つは，Conflict Gameの題材となっ ているハゲタカのえじき（メビウスゲームズ）のルールに少し変更 を加えたものである。このゲームを学習用に用いた。

学習ゲームを 2 回行い，その後テストゲームを 1 回行うことを 1 セットとし，これを計 3 セット行った。学習ゲームの対戦はグル ープ内の参加者内で行うが，テストゲームの対戦は，他のグル ープの参加者 3 人のデータと行うと教示した。また，テストゲーム のフィードバックは，すべての実験手続き後に行うと教示した。計9回のゲームを行い，グループ内で最も合計得点が高い参加者に，基本報酬の 1,000 円に加え，追加報酬として 1,000 円 を与えることも教示した。

テストゲームは，参加者に紙を配り，自分の手を記入してもら う形で行った。各テストゲームについて，自分の手だけでなく， どのように考えて戦略を決めたかを簡単に記述してもらった。

実験参加者は 40 人であった。らち男性が 36 人，女性が 4 人 であった。平均年齢は 21.18 ± 1.05 歳であった。

2.2 戦略の傾向

（1）分析方法

Conflict Gameをナイーブに考えれば， 1 point が最も価値が低く， 10 point が最も価値が高いので， 1 から 10 の数字を順番 に割り当てる手にとることになるだろう。しかし，もし 1 人でも同じ ように考える他プレイヤーがいれば，自分は 1 点も得ることがで きないことになる。また，高得点を捨てて，中程度の得点を複数取ることで，合計点の最大化を図ることも考えられる。つまり，各 プレイヤーは， 10 point などの高得点をあえて避けて，少し低い点を取りにいくような戦略が現れることが予想される。
point の値を $x(1 \leq x \leq 10)$ とし，point に対する bet の 3 回の平均を y として，次の 2 つの式を考える。

$$
\begin{gathered}
y=\alpha x+\beta \cdots \text { (1) } \\
y=b \exp \left\{-\tau(x-m)^{2}\right\}+c \cdots \text { (2) }
\end{gathered}
$$

実験によって得られた各参加者の y に対して，これらのモデ ルのらちどちらがよく適合するかを調べる。各プレイヤーが意思決定の際に期待得点を最大化すると考えれば，（1）だけでなく（2） のような戦略も現れるはずである。

（2）結果

2 つのモデルによる回帰の結果を比較した。40人の参加者の 3 回のテストゲームの，pointの値 x とその bet の平均値 y ，（1），（2）式によって回帰した。その後，AIC が外れ値を取った 1 人を除 いて， 39 人の結果について，各モデルの AICを比較した。両者 の平均値に有意差が見られた $(t$ 検定，$t=3.6554, p=$ 0．0004767）。このことより，参加者の betの傾向は，線形よりも山形に近いと考えられる。つまり，高得点は他のプレイヤーも取り

行こうとするため被る可能性が高いので，少し低い点数を取りに行こうとする傾向があると考えられる。モデル（1）のAIC は 44．84169，モデル（2）のAICは39．07601であった。

3．モデルによる分析

3.1 意思決定モデルの詳細

（1）戦略簡略化

2 節での分析のように，実験参加者の戦略の傾向は山型にな っていることが考えられる。そこで，モデルにおいては，以下の ように簡略化した戦略のみをとると考える。
a．モデルには，$x=1 \sim 10$ の 10 個の行動の選択肢があると考 え，これを戦略xと呼ぶ。
b．モデルはまず，x を $1 ~ 10$ のうちから決定し，x に 10 を割り当 てる。
c．その後，m を中心として対称になるように bet を決定する。具体的には，「 $m-1, m+1$ にそれぞれ 8 か 9 をランダムに割り当てる。次に $m-2, m+2$ にそれぞれ 6 か 7 をランダム に割り当てる。」といらことを繰り返す。ただし，$m-i$ が 1 を下回ったときは，$m+i$ から大きい順に数字を割り当てる。同様に，$m+i$ が 10 を超えたときは，$m-i$ から大きい順に数字を割り当てる。
つまり，モデルの戦略は， 10 point にどの数字を bet したかでほ とんど決まると考える。
（2）モデルの種類
ここでは，以下のような 3 つのモデルを考える。
a．相手のことを考えず行動を決定するモデル（Random opponents）
b．相手が 3 人だと考えて行動を決定するモデル（Three opponents）
c．相手が 1 人だと考えて行動を決定するモデル（One opponent）
これら 3 つのモデルについて，期待利得が最大になるように行動するとき， 10 個の戦略をどのような確率で選ぶかを計算す ることで，相手の考慮の仕方により，取るべき戦略が変わってく ることを示す。また，これらのモデルを参加者の行動と比較する ことで，参加者がどのように相手を考慮しているかを検討する。

a．Random opponents

3 人の相手すべてがランダムに行動すると仮定したとき，各戦略の期待得点を計算することができる。得点 i に数字 x_{i} を割り当 てたときの期待得点は

$$
v_{i}=\sum_{i=1}^{10} \frac{\left(x_{i}-1\right)^{3}}{10^{3}} i
$$

と書ける。このモデルの戦略iの選択確率を $C P_{r n d, i}$ は

$$
C P_{r n d, i}=\frac{\exp \left(\beta v_{i}\right)}{\sum_{i=1}^{10} \exp \left(\beta v_{i}\right)}
$$

で計算される。
b．Three opponents
他プレイヤーが戦略 x を取る確率がそれぞれ

$$
p(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

に従うとする。また，μ には事前分布

$$
p(\mu)=\max \left(0, \frac{1}{18}(\mu-4)\right)
$$

図 1：意思決定モデルの，各戦略の選択確率
を想定する。これは，大きい point には大きい得点を出しやすい であろうというプレイヤーの予想を表している。プレイヤーが戦略iをとり，他の3プレイヤーが戦略 $x_{1}, x_{2} x_{3}$ をとったときの利得を $\operatorname{gain}\left(i, x_{1}, x_{2}, x_{3}\right)$ とすると，戦略しの期待値は

$$
E_{i}\left(\mu_{i}, \sigma_{i}\right)=\sum_{x_{1}, x_{2}, x_{3}} \operatorname{gain}\left(i, x_{1}, x_{2}, x_{3}\right) p(\mu) \prod_{j}^{3} p\left(x_{j} ; \mu_{i}, \sigma_{i}\right)
$$

である。このとき，戦略iを選択する確率は

$$
C P_{i}\left(\mu_{i}, \sigma_{i}\right)=\frac{\exp \left(\beta E_{i}\right)}{\sum_{i}^{10} \exp \left(\beta E_{i}\right)}
$$

と書けるが，これを $\left(\mu_{i}, \sigma_{i}\right)$ について最大化したものを $C P_{i}\left(\hat{\mu}_{i}, \hat{\sigma}_{i}\right)$ と書くと，このモデルの戦略iの選択確率を $C P_{r n d, i}$ は

$$
C P_{\text {three }, i}=\frac{\exp \left(\beta C P_{i}\left(\hat{\mu}_{i}, \hat{\sigma}_{i}\right)\right)}{\sum_{i=1}^{10} \exp \left(\beta C P_{i}\left(\hat{\mu}_{i}, \hat{\sigma}_{i}\right)\right)}
$$

で計算される。
c．One opponent
自分が戦略 $て$ で，相手が戦略 j のときの利得を $v_{i, j}$ とする。戦略 i を取る確率 $C P_{i}$ を

$$
C P_{i}=\max _{j} \exp \frac{\exp \left(\beta v_{i, j}\right)}{\sum_{j=1}^{10} \exp \left(\beta v_{i, j}\right)}
$$

とする。このモデルの戦略iの選択確率を $C P_{r n d, i}$ は

$$
C P_{\text {one }, i}=\frac{\exp \left(\beta C P_{i}\right)}{\sum_{i=1}^{10} \exp \left(\beta C P_{i}\right)}
$$

で計算される。

3.2 意思決定モデルの選択確率

上の 3 つのモデルについて，各戦略の選択確率を示したもの が図 1 である。このグラフにより，相手を 1 人だと考えて行動を決定する場合，戦略 6，7，8 をとる確率が高いことが示された。これ は，9，10などの高い pointを相手に譲っても，その他の点数を取 ることで，合計得点の最大化が図れるということである。また，相手を 3 人だと考えて行動を決定する場合，戦略 4，5 も候補にな ることが示された。これは，複数人の相手がさまざまな戦略をと ると考えた場合，大きい point が取りにくくなることから，より小さ い得点をかき集めることが合計得点の最大化に有効なためだと考えられる。以上より，想定する人数の違いにより，とるべき戦略 が変わることがわかった。

図 2 ：実験参加者のモデルへのフィッティング

3.3 意思決定モデルへのフィッティング

参加者が t 回目のゲーム $(1 \leq t \leq 3)$ で 10 を割り当てた point を p_{t} とし，$C P_{\text {model，} p_{1}} \times C P_{\text {model，} p_{2}} \times C P_{\text {model，} p_{3}}$ が最大となるよ うなモデルに分類した。図3の棒グラフは，このモデルフィツティ ングの結果である（縦軸は該当人数）。このモデル分類では random opponents model に分類された参加者が 19 人，one opponent model に分類された参加者が 17 人，three opponents model に分類された参加者が 4 人であった。 3 人の相手がそれ ぞれ違った戦略を取ってくることを考慮していると考えられる参加者は少なかった。つまり，モデル分析の結果，多くの参加者 が，均質な 3 人の相手を想定するか，あるいは相手のことをあま り考慮せずに戦略を決定している可能性が高いと考えられる。

4．結論

実験結果とその分析により，集団の想定の仕方について複数のモデルを設定することで，その想定の仕方によって，とるべ き戦略が変わることが示された。また，参加者へのモデルフィツ テイングの結果，多くの参加者は，さまざまなタイプの 3 人を想定して戦略を決定している可能性が低いことが示唆された。つ まり，相手が集団であるゲームにおいて，実際に集団の 1 人ひ とりに対して予想を立て，その上で行動を決定することはせず， より計算が容易な方法に従って行動を決定している可能性が考 えられる。しかし，本研究で用いた分析にはいくつかの限界が存在する。まず，今回の分析では，戦略は 10 point にどの数字 を bet したかといらことで特徴づけられ，ある pointを中心に対称 になるように戦略を決定すると仮定し，モデルの設定と評価を行 った。ところが，このゲームでは，ある手のらちの数字の 2 つを入 れ替えただけで，大きく得点が変わり得る。例えば，他のプレイ ヤーが全員 10 point には 1 などの小さい数を bet すると予想し ていれば， 10 pointに 10 を割り当てなくても 5 などで十分であり， その代わり他の point に 10 を割り当てることができる。このような細かい戦略の分析については，今後の課題としたい。

参考文献

［Camerer 2003］Camerer，F．：Behavioral studies of strategic thinking in games，TRENDS in Cognitive Sciences 7（5）
［Camerer 2004］Camerer，F．，Ho，T．\＆Chong，J．：A Cognitive Hierarchy Model of Games，The Quarterly Journal of Economics，119（3），861－898
［Nagel 1995］Unraveling in Guessing Games：An Experimental Study ，The American Economic Review 85（5），1313－26

[^0]: 連絡先：井上輝義：dejima2357＠gmail．com

