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Many of the decisions in the real world are multi objective decision-making. Since there is generally no choice
to optimize all objectives, the decision maker selects one from multiple alternatives with different importance for
each objective based on their own preferences. However, in situations where there are other decision makers ,
the choice you choose may change. At this time, I focus on that a latent ”objective for considering the selection
of others” appears and decision maker shifts the objective. Therefore, in this research, I propose a modeling of
decision-making to shift objectives due to the existence of others in the multi-agent system. I also control the
behavior of the whole decision-maker using the objective transition mechanism. As a result of the experiment, I
could model decisions considering the selection of others, and succeeded to control the whole decision-maker to the
ideal behavior.
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fi(x1, x2, . . . , xn) (i = 1, 2, . . . ,m) (1)

l

gj(x1, x2, . . . , xn) ≥ 0 (j = 1, 2, . . . , l) (2)

[ 07]

fi(x)

2.1 ( ) y1, y2∈ Rm

y1 < y2 ⇔ y1
i < y2

i , ∀i = 1, . . . ,m

y1 � y2 ⇔ y1
i � y2

i , ∀i = 1, . . . ,m

y1 ≤ y2 ⇔ y1 ≤ y2, y1 �= y2

2.2 ( ) f(x) ≤ f(x̂) x ∈ X

x̂
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2.2

[Sutton 98]

〈S,A,R,P, γ〉 S A
R P γ

t st ∈ S
πt at ∈ A (t+ 1)

st, at st+1 rt+1

s a π
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Q (3) Q s a

π

Q∗(s, a) s a

(4)

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s, at = a

}
(3)

Q∗(s, a) =
∑
s′

P a
ss′ [R

a
ss′ + γmax

a′ Q∗(s′, a′)] (4)
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(MOMDP) 〈S,A,R,P, γ〉 MOMDP
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P γ s ∈ S
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1 1 1

1 1
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a ∈ A s′ ∈ S
R(s, a, s′) = (R1(s, a, s

′), R2(s, a, s
′), . . . , Rm(s, a, s′))

3.2
(MORL)

1

single-policy approach

multiple-policy approach 2 [Roijers 13]

single-policy approach (a)
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3.3
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m

k

k+ 1

Agent = {agent1, agent2, ...agentn} agenti
xagenti (5)

wk+1

wagenti
k+1 = f(xagent1 ,xagent2 , ...,xagenti−1) (5)

agenti wk+1 agenti−1 X =

{xagent1 ,xagent2 , ...,xagenti−1}

4.

4.1
single-policy approach
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Algorithm 1

1: E : The maximum number of episodes
2: K : The number of objectives in single agent system
3: N : The number of agents

4: Initialize TQ(s, a) arbitrary
5: for h = 0 to E do

6: for j = 1 to N do
7: initialize s

8: repeat

9: Choose a from s using policy derived from TQ(s, a)
10: Take action a and observe state s′ ∈ S and reward

vector r ∈ R

11: greedya′ (s′) ← choose a′ from s′ using policy derived
from TQ(s′, a′)

12: for i = 1 to k + 1 do
13: Qi(s, a) ← Qi(s, a) + α[ri(s, a) +

γQi(s
′, greedya′ )−Qi(s, a)]

14: end for

15: Compute TQ(s, a)
16: s ← s′
17: until s is terminal

18: return x∗agentj

19: end for
20: rk+1 ← r′k+1
21: end for

single-policy approach

Algorithm1
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TQ(s, a) =

k+1∑
i=1

wiQi(s, a) (6)

17

18

20

Rk+1

1 1

E

4.2

k

w = {w1, w2, ..., wk}
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Algorithm2

Algorithm 2

1: Given MOMDP〈S,A, T, γ,R〉
W = {wagent1 ,wagent2 ...wagentn}

2: while not converged do

3: for i = 1 to n do

4: agenti
5: Rk+1 R

′
k+1

6: end for

7: end while

8:

9: 10

wk+1 w′
k+1 2

10: return W

1

1

wk+1

5.

5.1
Deep Sea Treasure(DST) [Vamplew 11]
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